This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | |- F = ( Scalar ` W ) |
|
| Assertion | clm1 | |- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 3 | 1 2 | clmsubrg | |- ( W e. CMod -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 4 | eqid | |- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
|
| 5 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 6 | 4 5 | subrg1 | |- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 7 | 3 6 | syl | |- ( W e. CMod -> 1 = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 8 | 1 2 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 9 | 8 | fveq2d | |- ( W e. CMod -> ( 1r ` F ) = ( 1r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 10 | 7 9 | eqtr4d | |- ( W e. CMod -> 1 = ( 1r ` F ) ) |