This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction on a subcomplex module. (Contributed by Mario Carneiro, 19-Nov-2013) (Revised by AV, 7-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvsubval.v | |- V = ( Base ` W ) |
|
| clmvsubval.p | |- .+ = ( +g ` W ) |
||
| clmvsubval.m | |- .- = ( -g ` W ) |
||
| clmvsubval.f | |- F = ( Scalar ` W ) |
||
| clmvsubval.s | |- .x. = ( .s ` W ) |
||
| Assertion | clmvsubval2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( ( -u 1 .x. B ) .+ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvsubval.v | |- V = ( Base ` W ) |
|
| 2 | clmvsubval.p | |- .+ = ( +g ` W ) |
|
| 3 | clmvsubval.m | |- .- = ( -g ` W ) |
|
| 4 | clmvsubval.f | |- F = ( Scalar ` W ) |
|
| 5 | clmvsubval.s | |- .x. = ( .s ` W ) |
|
| 6 | 1 2 3 4 5 | clmvsubval | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( -u 1 .x. B ) ) ) |
| 7 | clmabl | |- ( W e. CMod -> W e. Abel ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> W e. Abel ) |
| 9 | simp2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> A e. V ) |
|
| 10 | simpl | |- ( ( W e. CMod /\ B e. V ) -> W e. CMod ) |
|
| 11 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 12 | 4 11 | clmneg1 | |- ( W e. CMod -> -u 1 e. ( Base ` F ) ) |
| 13 | 12 | adantr | |- ( ( W e. CMod /\ B e. V ) -> -u 1 e. ( Base ` F ) ) |
| 14 | simpr | |- ( ( W e. CMod /\ B e. V ) -> B e. V ) |
|
| 15 | 1 4 5 11 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` F ) /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 16 | 10 13 14 15 | syl3anc | |- ( ( W e. CMod /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 17 | 16 | 3adant2 | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( -u 1 .x. B ) e. V ) |
| 18 | 1 2 | ablcom | |- ( ( W e. Abel /\ A e. V /\ ( -u 1 .x. B ) e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) |
| 19 | 8 9 17 18 | syl3anc | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .+ ( -u 1 .x. B ) ) = ( ( -u 1 .x. B ) .+ A ) ) |
| 20 | 6 19 | eqtrd | |- ( ( W e. CMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( ( -u 1 .x. B ) .+ A ) ) |