This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. ( lmodvneg1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvneg1.v | |- V = ( Base ` W ) |
|
| clmvneg1.n | |- N = ( invg ` W ) |
||
| clmvneg1.f | |- F = ( Scalar ` W ) |
||
| clmvneg1.s | |- .x. = ( .s ` W ) |
||
| Assertion | clmvneg1 | |- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( N ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvneg1.v | |- V = ( Base ` W ) |
|
| 2 | clmvneg1.n | |- N = ( invg ` W ) |
|
| 3 | clmvneg1.f | |- F = ( Scalar ` W ) |
|
| 4 | clmvneg1.s | |- .x. = ( .s ` W ) |
|
| 5 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 6 | 3 5 | clmzss | |- ( W e. CMod -> ZZ C_ ( Base ` F ) ) |
| 7 | 1zzd | |- ( W e. CMod -> 1 e. ZZ ) |
|
| 8 | 6 7 | sseldd | |- ( W e. CMod -> 1 e. ( Base ` F ) ) |
| 9 | 3 5 | clmneg | |- ( ( W e. CMod /\ 1 e. ( Base ` F ) ) -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 10 | 8 9 | mpdan | |- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` 1 ) ) |
| 11 | 3 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` F ) ) |
| 12 | 11 | fveq2d | |- ( W e. CMod -> ( ( invg ` F ) ` 1 ) = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 13 | 10 12 | eqtrd | |- ( W e. CMod -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 14 | 13 | adantr | |- ( ( W e. CMod /\ X e. V ) -> -u 1 = ( ( invg ` F ) ` ( 1r ` F ) ) ) |
| 15 | 14 | oveq1d | |- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) ) |
| 16 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 17 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 18 | eqid | |- ( invg ` F ) = ( invg ` F ) |
|
| 19 | 1 2 3 4 17 18 | lmodvneg1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
| 20 | 16 19 | sylan | |- ( ( W e. CMod /\ X e. V ) -> ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. X ) = ( N ` X ) ) |
| 21 | 15 20 | eqtrd | |- ( ( W e. CMod /\ X e. V ) -> ( -u 1 .x. X ) = ( N ` X ) ) |