This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. ( lmodvneg1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvneg1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvneg1.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| clmvneg1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvneg1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | clmvneg1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( - 1 · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvneg1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvneg1.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 3 | clmvneg1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | clmvneg1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 6 | 3 5 | clmzss | ⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ ( Base ‘ 𝐹 ) ) |
| 7 | 1zzd | ⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ℤ ) | |
| 8 | 6 7 | sseldd | ⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 9 | 3 5 | clmneg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 10 | 8 9 | mpdan | ⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ 1 ) ) |
| 11 | 3 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( ( invg ‘ 𝐹 ) ‘ 1 ) = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 13 | 10 12 | eqtrd | ⊢ ( 𝑊 ∈ ℂMod → - 1 = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → - 1 = ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( - 1 · 𝑋 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) ) |
| 16 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 17 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 18 | eqid | ⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) | |
| 19 | 1 2 3 4 17 18 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 20 | 16 19 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 21 | 15 20 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( - 1 · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |