This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number A is the cardinality (size) of the smallest unbounded subset y of the ordinal number. Unbounded means that for every member of A , there is a member of y that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfval | |- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflem | |- ( A e. On -> E. x E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) |
|
| 2 | intexab | |- ( E. x E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) <-> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. _V ) |
|
| 3 | 1 2 | sylib | |- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. _V ) |
| 4 | sseq2 | |- ( v = A -> ( y C_ v <-> y C_ A ) ) |
|
| 5 | raleq | |- ( v = A -> ( A. z e. v E. w e. y z C_ w <-> A. z e. A E. w e. y z C_ w ) ) |
|
| 6 | 4 5 | anbi12d | |- ( v = A -> ( ( y C_ v /\ A. z e. v E. w e. y z C_ w ) <-> ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) |
| 7 | 6 | anbi2d | |- ( v = A -> ( ( x = ( card ` y ) /\ ( y C_ v /\ A. z e. v E. w e. y z C_ w ) ) <-> ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 8 | 7 | exbidv | |- ( v = A -> ( E. y ( x = ( card ` y ) /\ ( y C_ v /\ A. z e. v E. w e. y z C_ w ) ) <-> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 9 | 8 | abbidv | |- ( v = A -> { x | E. y ( x = ( card ` y ) /\ ( y C_ v /\ A. z e. v E. w e. y z C_ w ) ) } = { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 10 | 9 | inteqd | |- ( v = A -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ v /\ A. z e. v E. w e. y z C_ w ) ) } = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 11 | df-cf | |- cf = ( v e. On |-> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ v /\ A. z e. v E. w e. y z C_ w ) ) } ) |
|
| 12 | 10 11 | fvmptg | |- ( ( A e. On /\ |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. _V ) -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 13 | 3 12 | mpdan | |- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |