This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for caucvgr . (Contributed by NM, 4-Apr-2005) (Proof shortened by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvgr.1 | |- ( ph -> A C_ RR ) |
|
| caucvgr.2 | |- ( ph -> F : A --> CC ) |
||
| caucvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
||
| caucvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
||
| caucvgrlem2.5 | |- H : CC --> RR |
||
| caucvgrlem2.6 | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
||
| Assertion | caucvgrlem2 | |- ( ph -> ( n e. A |-> ( H ` ( F ` n ) ) ) ~~>r ( ~~>r ` ( H o. F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.1 | |- ( ph -> A C_ RR ) |
|
| 2 | caucvgr.2 | |- ( ph -> F : A --> CC ) |
|
| 3 | caucvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 4 | caucvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
|
| 5 | caucvgrlem2.5 | |- H : CC --> RR |
|
| 6 | caucvgrlem2.6 | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
|
| 7 | fcompt | |- ( ( H : CC --> RR /\ F : A --> CC ) -> ( H o. F ) = ( n e. A |-> ( H ` ( F ` n ) ) ) ) |
|
| 8 | 5 2 7 | sylancr | |- ( ph -> ( H o. F ) = ( n e. A |-> ( H ` ( F ` n ) ) ) ) |
| 9 | fco | |- ( ( H : CC --> RR /\ F : A --> CC ) -> ( H o. F ) : A --> RR ) |
|
| 10 | 5 2 9 | sylancr | |- ( ph -> ( H o. F ) : A --> RR ) |
| 11 | 2 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> F : A --> CC ) |
| 12 | simprr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> k e. A ) |
|
| 13 | 11 12 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( F ` k ) e. CC ) |
| 14 | simprl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> j e. A ) |
|
| 15 | 11 14 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( F ` j ) e. CC ) |
| 16 | 13 15 6 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 17 | 5 | ffvelcdmi | |- ( ( F ` k ) e. CC -> ( H ` ( F ` k ) ) e. RR ) |
| 18 | 13 17 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( H ` ( F ` k ) ) e. RR ) |
| 19 | 5 | ffvelcdmi | |- ( ( F ` j ) e. CC -> ( H ` ( F ` j ) ) e. RR ) |
| 20 | 15 19 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( H ` ( F ` j ) ) e. RR ) |
| 21 | 18 20 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) e. RR ) |
| 22 | 21 | recnd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) e. CC ) |
| 23 | 22 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) e. RR ) |
| 24 | 13 15 | subcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( F ` k ) - ( F ` j ) ) e. CC ) |
| 25 | 24 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR ) |
| 26 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 27 | 26 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> x e. RR ) |
| 28 | lelttr | |- ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) e. RR /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
|
| 29 | 23 25 27 28 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) /\ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
| 30 | 16 29 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
| 31 | fvco3 | |- ( ( F : A --> CC /\ k e. A ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) |
|
| 32 | 11 12 31 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H o. F ) ` k ) = ( H ` ( F ` k ) ) ) |
| 33 | fvco3 | |- ( ( F : A --> CC /\ j e. A ) -> ( ( H o. F ) ` j ) = ( H ` ( F ` j ) ) ) |
|
| 34 | 11 14 33 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( H o. F ) ` j ) = ( H ` ( F ` j ) ) ) |
| 35 | 32 34 | oveq12d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) = ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) |
| 36 | 35 | fveq2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) = ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) ) |
| 37 | 36 | breq1d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x <-> ( abs ` ( ( H ` ( F ` k ) ) - ( H ` ( F ` j ) ) ) ) < x ) ) |
| 38 | 30 37 | sylibrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) |
| 39 | 38 | imim2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. A /\ k e. A ) ) -> ( ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
| 40 | 39 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. A ) /\ k e. A ) -> ( ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
| 41 | 40 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ j e. A ) -> ( A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
| 42 | 41 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
| 43 | 42 | ralimdva | |- ( ph -> ( A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) ) |
| 44 | 4 43 | mpd | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( ( H o. F ) ` k ) - ( ( H o. F ) ` j ) ) ) < x ) ) |
| 45 | 1 10 3 44 | caurcvgr | |- ( ph -> ( H o. F ) ~~>r ( limsup ` ( H o. F ) ) ) |
| 46 | rlimrel | |- Rel ~~>r |
|
| 47 | 46 | releldmi | |- ( ( H o. F ) ~~>r ( limsup ` ( H o. F ) ) -> ( H o. F ) e. dom ~~>r ) |
| 48 | 45 47 | syl | |- ( ph -> ( H o. F ) e. dom ~~>r ) |
| 49 | ax-resscn | |- RR C_ CC |
|
| 50 | fss | |- ( ( ( H o. F ) : A --> RR /\ RR C_ CC ) -> ( H o. F ) : A --> CC ) |
|
| 51 | 10 49 50 | sylancl | |- ( ph -> ( H o. F ) : A --> CC ) |
| 52 | 51 3 | rlimdm | |- ( ph -> ( ( H o. F ) e. dom ~~>r <-> ( H o. F ) ~~>r ( ~~>r ` ( H o. F ) ) ) ) |
| 53 | 48 52 | mpbid | |- ( ph -> ( H o. F ) ~~>r ( ~~>r ` ( H o. F ) ) ) |
| 54 | 8 53 | eqbrtrrd | |- ( ph -> ( n e. A |-> ( H ` ( F ` n ) ) ) ~~>r ( ~~>r ` ( H o. F ) ) ) |