This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvgr.1 | |- ( ph -> A C_ RR ) |
|
| caucvgr.2 | |- ( ph -> F : A --> CC ) |
||
| caucvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
||
| caucvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
||
| Assertion | caucvgr | |- ( ph -> F e. dom ~~>r ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.1 | |- ( ph -> A C_ RR ) |
|
| 2 | caucvgr.2 | |- ( ph -> F : A --> CC ) |
|
| 3 | caucvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 4 | caucvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
|
| 5 | 2 | feqmptd | |- ( ph -> F = ( n e. A |-> ( F ` n ) ) ) |
| 6 | 2 | ffvelcdmda | |- ( ( ph /\ n e. A ) -> ( F ` n ) e. CC ) |
| 7 | 6 | replimd | |- ( ( ph /\ n e. A ) -> ( F ` n ) = ( ( Re ` ( F ` n ) ) + ( _i x. ( Im ` ( F ` n ) ) ) ) ) |
| 8 | 7 | mpteq2dva | |- ( ph -> ( n e. A |-> ( F ` n ) ) = ( n e. A |-> ( ( Re ` ( F ` n ) ) + ( _i x. ( Im ` ( F ` n ) ) ) ) ) ) |
| 9 | 5 8 | eqtrd | |- ( ph -> F = ( n e. A |-> ( ( Re ` ( F ` n ) ) + ( _i x. ( Im ` ( F ` n ) ) ) ) ) ) |
| 10 | fvexd | |- ( ( ph /\ n e. A ) -> ( Re ` ( F ` n ) ) e. _V ) |
|
| 11 | ovexd | |- ( ( ph /\ n e. A ) -> ( _i x. ( Im ` ( F ` n ) ) ) e. _V ) |
|
| 12 | ref | |- Re : CC --> RR |
|
| 13 | resub | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( Re ` ( ( F ` k ) - ( F ` j ) ) ) = ( ( Re ` ( F ` k ) ) - ( Re ` ( F ` j ) ) ) ) |
|
| 14 | 13 | fveq2d | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( Re ` ( ( F ` k ) - ( F ` j ) ) ) ) = ( abs ` ( ( Re ` ( F ` k ) ) - ( Re ` ( F ` j ) ) ) ) ) |
| 15 | subcl | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( ( F ` k ) - ( F ` j ) ) e. CC ) |
|
| 16 | absrele | |- ( ( ( F ` k ) - ( F ` j ) ) e. CC -> ( abs ` ( Re ` ( ( F ` k ) - ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
|
| 17 | 15 16 | syl | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( Re ` ( ( F ` k ) - ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 18 | 14 17 | eqbrtrrd | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( Re ` ( F ` k ) ) - ( Re ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 19 | 1 2 3 4 12 18 | caucvgrlem2 | |- ( ph -> ( n e. A |-> ( Re ` ( F ` n ) ) ) ~~>r ( ~~>r ` ( Re o. F ) ) ) |
| 20 | ax-icn | |- _i e. CC |
|
| 21 | 20 | elexi | |- _i e. _V |
| 22 | 21 | a1i | |- ( ( ph /\ n e. A ) -> _i e. _V ) |
| 23 | fvexd | |- ( ( ph /\ n e. A ) -> ( Im ` ( F ` n ) ) e. _V ) |
|
| 24 | rlimconst | |- ( ( A C_ RR /\ _i e. CC ) -> ( n e. A |-> _i ) ~~>r _i ) |
|
| 25 | 1 20 24 | sylancl | |- ( ph -> ( n e. A |-> _i ) ~~>r _i ) |
| 26 | imf | |- Im : CC --> RR |
|
| 27 | imsub | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( Im ` ( ( F ` k ) - ( F ` j ) ) ) = ( ( Im ` ( F ` k ) ) - ( Im ` ( F ` j ) ) ) ) |
|
| 28 | 27 | fveq2d | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( Im ` ( ( F ` k ) - ( F ` j ) ) ) ) = ( abs ` ( ( Im ` ( F ` k ) ) - ( Im ` ( F ` j ) ) ) ) ) |
| 29 | absimle | |- ( ( ( F ` k ) - ( F ` j ) ) e. CC -> ( abs ` ( Im ` ( ( F ` k ) - ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
|
| 30 | 15 29 | syl | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( Im ` ( ( F ` k ) - ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 31 | 28 30 | eqbrtrrd | |- ( ( ( F ` k ) e. CC /\ ( F ` j ) e. CC ) -> ( abs ` ( ( Im ` ( F ` k ) ) - ( Im ` ( F ` j ) ) ) ) <_ ( abs ` ( ( F ` k ) - ( F ` j ) ) ) ) |
| 32 | 1 2 3 4 26 31 | caucvgrlem2 | |- ( ph -> ( n e. A |-> ( Im ` ( F ` n ) ) ) ~~>r ( ~~>r ` ( Im o. F ) ) ) |
| 33 | 22 23 25 32 | rlimmul | |- ( ph -> ( n e. A |-> ( _i x. ( Im ` ( F ` n ) ) ) ) ~~>r ( _i x. ( ~~>r ` ( Im o. F ) ) ) ) |
| 34 | 10 11 19 33 | rlimadd | |- ( ph -> ( n e. A |-> ( ( Re ` ( F ` n ) ) + ( _i x. ( Im ` ( F ` n ) ) ) ) ) ~~>r ( ( ~~>r ` ( Re o. F ) ) + ( _i x. ( ~~>r ` ( Im o. F ) ) ) ) ) |
| 35 | 9 34 | eqbrtrd | |- ( ph -> F ~~>r ( ( ~~>r ` ( Re o. F ) ) + ( _i x. ( ~~>r ` ( Im o. F ) ) ) ) ) |
| 36 | rlimrel | |- Rel ~~>r |
|
| 37 | 36 | releldmi | |- ( F ~~>r ( ( ~~>r ` ( Re o. F ) ) + ( _i x. ( ~~>r ` ( Im o. F ) ) ) ) -> F e. dom ~~>r ) |
| 38 | 35 37 | syl | |- ( ph -> F e. dom ~~>r ) |