This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resub | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A - B ) ) = ( ( Re ` A ) - ( Re ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | readd | |- ( ( A e. CC /\ -u B e. CC ) -> ( Re ` ( A + -u B ) ) = ( ( Re ` A ) + ( Re ` -u B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A + -u B ) ) = ( ( Re ` A ) + ( Re ` -u B ) ) ) |
| 4 | reneg | |- ( B e. CC -> ( Re ` -u B ) = -u ( Re ` B ) ) |
|
| 5 | 4 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` -u B ) = -u ( Re ` B ) ) |
| 6 | 5 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( Re ` A ) + ( Re ` -u B ) ) = ( ( Re ` A ) + -u ( Re ` B ) ) ) |
| 7 | 3 6 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A + -u B ) ) = ( ( Re ` A ) + -u ( Re ` B ) ) ) |
| 8 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 9 | 8 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A + -u B ) ) = ( Re ` ( A - B ) ) ) |
| 10 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 11 | 10 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 12 | recl | |- ( B e. CC -> ( Re ` B ) e. RR ) |
|
| 13 | 12 | recnd | |- ( B e. CC -> ( Re ` B ) e. CC ) |
| 14 | negsub | |- ( ( ( Re ` A ) e. CC /\ ( Re ` B ) e. CC ) -> ( ( Re ` A ) + -u ( Re ` B ) ) = ( ( Re ` A ) - ( Re ` B ) ) ) |
|
| 15 | 11 13 14 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( Re ` A ) + -u ( Re ` B ) ) = ( ( Re ` A ) - ( Re ` B ) ) ) |
| 16 | 7 9 15 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( Re ` ( A - B ) ) = ( ( Re ` A ) - ( Re ` B ) ) ) |