This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of the sum of two converging functions. Proposition 12-2.1(a) of Gleason p. 168. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimadd.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| rlimadd.4 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| rlimadd.5 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
||
| rlimadd.6 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
||
| Assertion | rlimadd | |- ( ph -> ( x e. A |-> ( B + C ) ) ~~>r ( D + E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimadd.3 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | rlimadd.4 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 3 | rlimadd.5 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
|
| 4 | rlimadd.6 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
|
| 5 | 1 3 | rlimmptrcl | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 6 | 2 4 | rlimmptrcl | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 7 | 5 6 | addcld | |- ( ( ph /\ x e. A ) -> ( B + C ) e. CC ) |
| 8 | rlimcl | |- ( ( x e. A |-> B ) ~~>r D -> D e. CC ) |
|
| 9 | 3 8 | syl | |- ( ph -> D e. CC ) |
| 10 | rlimcl | |- ( ( x e. A |-> C ) ~~>r E -> E e. CC ) |
|
| 11 | 4 10 | syl | |- ( ph -> E e. CC ) |
| 12 | 9 11 | addcld | |- ( ph -> ( D + E ) e. CC ) |
| 13 | simpr | |- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
|
| 14 | 9 | adantr | |- ( ( ph /\ y e. RR+ ) -> D e. CC ) |
| 15 | 11 | adantr | |- ( ( ph /\ y e. RR+ ) -> E e. CC ) |
| 16 | addcn2 | |- ( ( y e. RR+ /\ D e. CC /\ E e. CC ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - D ) ) < z /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( u + v ) - ( D + E ) ) ) < y ) ) |
|
| 17 | 13 14 15 16 | syl3anc | |- ( ( ph /\ y e. RR+ ) -> E. z e. RR+ E. w e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - D ) ) < z /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( u + v ) - ( D + E ) ) ) < y ) ) |
| 18 | 5 6 7 12 3 4 17 | rlimcn3 | |- ( ph -> ( x e. A |-> ( B + C ) ) ~~>r ( D + E ) ) |