This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the hom-set extractor for arrows, which tags the morphisms of the underlying hom-set with domain and codomain, which can then be extracted using df-doma and df-coda . (Contributed by FL, 6-May-2007) (Revised by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-homa | |- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | choma | |- HomA |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- c |
| 6 | 5 4 | cfv | |- ( Base ` c ) |
| 7 | 6 6 | cxp | |- ( ( Base ` c ) X. ( Base ` c ) ) |
| 8 | 3 | cv | |- x |
| 9 | 8 | csn | |- { x } |
| 10 | chom | |- Hom |
|
| 11 | 5 10 | cfv | |- ( Hom ` c ) |
| 12 | 8 11 | cfv | |- ( ( Hom ` c ) ` x ) |
| 13 | 9 12 | cxp | |- ( { x } X. ( ( Hom ` c ) ` x ) ) |
| 14 | 3 7 13 | cmpt | |- ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) |
| 15 | 1 2 14 | cmpt | |- ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
| 16 | 0 15 | wceq | |- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |