This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( SetCat2o ) is a category (provable from setccat and 2oex ) that does not have pairwise disjoint hom-sets, proved by this theorem combined with setc2obas . Notably, the empty set (/) is simultaneously an object ( setc2obas ), an identity morphism from (/) to (/) ( setcid or thincid ), and a non-identity morphism from (/) to 1o . See cat1lem and cat1 for a more general statement. This category is also thin ( setc2othin ), and therefore is "equivalent" to a preorder (actually a partial order). See prsthinc for more details on the "equivalence". (Contributed by Zhi Wang, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setc2ohom.c | |- C = ( SetCat ` 2o ) |
|
| setc2ohom.h | |- H = ( Hom ` C ) |
||
| Assertion | setc2ohom | |- (/) e. ( ( (/) H (/) ) i^i ( (/) H 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setc2ohom.c | |- C = ( SetCat ` 2o ) |
|
| 2 | setc2ohom.h | |- H = ( Hom ` C ) |
|
| 3 | f0 | |- (/) : (/) --> (/) |
|
| 4 | 2oex | |- 2o e. _V |
|
| 5 | 4 | a1i | |- ( T. -> 2o e. _V ) |
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 6 | prid1 | |- (/) e. { (/) , 1o } |
| 8 | df2o3 | |- 2o = { (/) , 1o } |
|
| 9 | 7 8 | eleqtrri | |- (/) e. 2o |
| 10 | 9 | a1i | |- ( T. -> (/) e. 2o ) |
| 11 | 1 5 2 10 10 | elsetchom | |- ( T. -> ( (/) e. ( (/) H (/) ) <-> (/) : (/) --> (/) ) ) |
| 12 | 11 | mptru | |- ( (/) e. ( (/) H (/) ) <-> (/) : (/) --> (/) ) |
| 13 | 3 12 | mpbir | |- (/) e. ( (/) H (/) ) |
| 14 | f0 | |- (/) : (/) --> 1o |
|
| 15 | 1oex | |- 1o e. _V |
|
| 16 | 15 | prid2 | |- 1o e. { (/) , 1o } |
| 17 | 16 8 | eleqtrri | |- 1o e. 2o |
| 18 | 17 | a1i | |- ( T. -> 1o e. 2o ) |
| 19 | 1 5 2 10 18 | elsetchom | |- ( T. -> ( (/) e. ( (/) H 1o ) <-> (/) : (/) --> 1o ) ) |
| 20 | 19 | mptru | |- ( (/) e. ( (/) H 1o ) <-> (/) : (/) --> 1o ) |
| 21 | 14 20 | mpbir | |- (/) e. ( (/) H 1o ) |
| 22 | 13 21 | elini | |- (/) e. ( ( (/) H (/) ) i^i ( (/) H 1o ) ) |