This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardmin | |- ( A e. V -> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numthcor | |- ( A e. V -> E. x e. On A ~< x ) |
|
| 2 | onintrab2 | |- ( E. x e. On A ~< x <-> |^| { x e. On | A ~< x } e. On ) |
|
| 3 | 1 2 | sylib | |- ( A e. V -> |^| { x e. On | A ~< x } e. On ) |
| 4 | onelon | |- ( ( |^| { x e. On | A ~< x } e. On /\ y e. |^| { x e. On | A ~< x } ) -> y e. On ) |
|
| 5 | 4 | ex | |- ( |^| { x e. On | A ~< x } e. On -> ( y e. |^| { x e. On | A ~< x } -> y e. On ) ) |
| 6 | 3 5 | syl | |- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y e. On ) ) |
| 7 | breq2 | |- ( x = y -> ( A ~< x <-> A ~< y ) ) |
|
| 8 | 7 | onnminsb | |- ( y e. On -> ( y e. |^| { x e. On | A ~< x } -> -. A ~< y ) ) |
| 9 | 6 8 | syli | |- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> -. A ~< y ) ) |
| 10 | vex | |- y e. _V |
|
| 11 | domtri | |- ( ( y e. _V /\ A e. V ) -> ( y ~<_ A <-> -. A ~< y ) ) |
|
| 12 | 10 11 | mpan | |- ( A e. V -> ( y ~<_ A <-> -. A ~< y ) ) |
| 13 | 9 12 | sylibrd | |- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y ~<_ A ) ) |
| 14 | nfcv | |- F/_ x A |
|
| 15 | nfcv | |- F/_ x ~< |
|
| 16 | nfrab1 | |- F/_ x { x e. On | A ~< x } |
|
| 17 | 16 | nfint | |- F/_ x |^| { x e. On | A ~< x } |
| 18 | 14 15 17 | nfbr | |- F/ x A ~< |^| { x e. On | A ~< x } |
| 19 | breq2 | |- ( x = |^| { x e. On | A ~< x } -> ( A ~< x <-> A ~< |^| { x e. On | A ~< x } ) ) |
|
| 20 | 18 19 | onminsb | |- ( E. x e. On A ~< x -> A ~< |^| { x e. On | A ~< x } ) |
| 21 | 1 20 | syl | |- ( A e. V -> A ~< |^| { x e. On | A ~< x } ) |
| 22 | 13 21 | jctird | |- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> ( y ~<_ A /\ A ~< |^| { x e. On | A ~< x } ) ) ) |
| 23 | domsdomtr | |- ( ( y ~<_ A /\ A ~< |^| { x e. On | A ~< x } ) -> y ~< |^| { x e. On | A ~< x } ) |
|
| 24 | 22 23 | syl6 | |- ( A e. V -> ( y e. |^| { x e. On | A ~< x } -> y ~< |^| { x e. On | A ~< x } ) ) |
| 25 | 24 | ralrimiv | |- ( A e. V -> A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) |
| 26 | iscard | |- ( ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } <-> ( |^| { x e. On | A ~< x } e. On /\ A. y e. |^| { x e. On | A ~< x } y ~< |^| { x e. On | A ~< x } ) ) |
|
| 27 | 3 25 26 | sylanbrc | |- ( A e. V -> ( card ` |^| { x e. On | A ~< x } ) = |^| { x e. On | A ~< x } ) |