This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set is strictly dominated by some ordinal. (Contributed by NM, 22-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numthcor | |- ( A e. V -> E. x e. On A ~< x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( y = A -> ( y ~< x <-> A ~< x ) ) |
|
| 2 | 1 | rexbidv | |- ( y = A -> ( E. x e. On y ~< x <-> E. x e. On A ~< x ) ) |
| 3 | vpwex | |- ~P y e. _V |
|
| 4 | 3 | numth2 | |- E. x e. On x ~~ ~P y |
| 5 | vex | |- y e. _V |
|
| 6 | 5 | canth2 | |- y ~< ~P y |
| 7 | ensym | |- ( x ~~ ~P y -> ~P y ~~ x ) |
|
| 8 | sdomentr | |- ( ( y ~< ~P y /\ ~P y ~~ x ) -> y ~< x ) |
|
| 9 | 6 7 8 | sylancr | |- ( x ~~ ~P y -> y ~< x ) |
| 10 | 9 | reximi | |- ( E. x e. On x ~~ ~P y -> E. x e. On y ~< x ) |
| 11 | 4 10 | ax-mp | |- E. x e. On y ~< x |
| 12 | 2 11 | vtoclg | |- ( A e. V -> E. x e. On A ~< x ) |