This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cofinality is a cardinal number. Proposition 11.11 of TakeutiZaring p. 103. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardcf | |- ( card ` ( cf ` A ) ) = ( cf ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval | |- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
|
| 2 | vex | |- v e. _V |
|
| 3 | eqeq1 | |- ( x = v -> ( x = ( card ` y ) <-> v = ( card ` y ) ) ) |
|
| 4 | 3 | anbi1d | |- ( x = v -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) <-> ( v = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 5 | 4 | exbidv | |- ( x = v -> ( E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) <-> E. y ( v = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 6 | 2 5 | elab | |- ( v e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } <-> E. y ( v = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) |
| 7 | fveq2 | |- ( v = ( card ` y ) -> ( card ` v ) = ( card ` ( card ` y ) ) ) |
|
| 8 | cardidm | |- ( card ` ( card ` y ) ) = ( card ` y ) |
|
| 9 | 7 8 | eqtrdi | |- ( v = ( card ` y ) -> ( card ` v ) = ( card ` y ) ) |
| 10 | eqeq2 | |- ( v = ( card ` y ) -> ( ( card ` v ) = v <-> ( card ` v ) = ( card ` y ) ) ) |
|
| 11 | 9 10 | mpbird | |- ( v = ( card ` y ) -> ( card ` v ) = v ) |
| 12 | 11 | adantr | |- ( ( v = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) -> ( card ` v ) = v ) |
| 13 | 12 | exlimiv | |- ( E. y ( v = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) -> ( card ` v ) = v ) |
| 14 | 6 13 | sylbi | |- ( v e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } -> ( card ` v ) = v ) |
| 15 | cardon | |- ( card ` v ) e. On |
|
| 16 | 14 15 | eqeltrrdi | |- ( v e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } -> v e. On ) |
| 17 | 16 | ssriv | |- { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ On |
| 18 | fvex | |- ( cf ` A ) e. _V |
|
| 19 | 1 18 | eqeltrrdi | |- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. _V ) |
| 20 | intex | |- ( { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } =/= (/) <-> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. _V ) |
|
| 21 | 19 20 | sylibr | |- ( A e. On -> { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } =/= (/) ) |
| 22 | onint | |- ( ( { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ On /\ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } =/= (/) ) -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
|
| 23 | 17 21 22 | sylancr | |- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 24 | 1 23 | eqeltrd | |- ( A e. On -> ( cf ` A ) e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 25 | fveq2 | |- ( v = ( cf ` A ) -> ( card ` v ) = ( card ` ( cf ` A ) ) ) |
|
| 26 | id | |- ( v = ( cf ` A ) -> v = ( cf ` A ) ) |
|
| 27 | 25 26 | eqeq12d | |- ( v = ( cf ` A ) -> ( ( card ` v ) = v <-> ( card ` ( cf ` A ) ) = ( cf ` A ) ) ) |
| 28 | 27 14 | vtoclga | |- ( ( cf ` A ) e. { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } -> ( card ` ( cf ` A ) ) = ( cf ` A ) ) |
| 29 | 24 28 | syl | |- ( A e. On -> ( card ` ( cf ` A ) ) = ( cf ` A ) ) |
| 30 | cff | |- cf : On --> On |
|
| 31 | 30 | fdmi | |- dom cf = On |
| 32 | 31 | eleq2i | |- ( A e. dom cf <-> A e. On ) |
| 33 | ndmfv | |- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
|
| 34 | 32 33 | sylnbir | |- ( -. A e. On -> ( cf ` A ) = (/) ) |
| 35 | card0 | |- ( card ` (/) ) = (/) |
|
| 36 | fveq2 | |- ( ( cf ` A ) = (/) -> ( card ` ( cf ` A ) ) = ( card ` (/) ) ) |
|
| 37 | id | |- ( ( cf ` A ) = (/) -> ( cf ` A ) = (/) ) |
|
| 38 | 35 36 37 | 3eqtr4a | |- ( ( cf ` A ) = (/) -> ( card ` ( cf ` A ) ) = ( cf ` A ) ) |
| 39 | 34 38 | syl | |- ( -. A e. On -> ( card ` ( cf ` A ) ) = ( cf ` A ) ) |
| 40 | 29 39 | pm2.61i | |- ( card ` ( cf ` A ) ) = ( cf ` A ) |