This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cflecard | |- ( cf ` A ) C_ ( card ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval | |- ( A e. On -> ( cf ` A ) = |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
|
| 2 | df-sn | |- { ( card ` A ) } = { x | x = ( card ` A ) } |
|
| 3 | ssid | |- A C_ A |
|
| 4 | ssid | |- z C_ z |
|
| 5 | sseq2 | |- ( w = z -> ( z C_ w <-> z C_ z ) ) |
|
| 6 | 5 | rspcev | |- ( ( z e. A /\ z C_ z ) -> E. w e. A z C_ w ) |
| 7 | 4 6 | mpan2 | |- ( z e. A -> E. w e. A z C_ w ) |
| 8 | 7 | rgen | |- A. z e. A E. w e. A z C_ w |
| 9 | 3 8 | pm3.2i | |- ( A C_ A /\ A. z e. A E. w e. A z C_ w ) |
| 10 | fveq2 | |- ( y = A -> ( card ` y ) = ( card ` A ) ) |
|
| 11 | 10 | eqeq2d | |- ( y = A -> ( x = ( card ` y ) <-> x = ( card ` A ) ) ) |
| 12 | sseq1 | |- ( y = A -> ( y C_ A <-> A C_ A ) ) |
|
| 13 | rexeq | |- ( y = A -> ( E. w e. y z C_ w <-> E. w e. A z C_ w ) ) |
|
| 14 | 13 | ralbidv | |- ( y = A -> ( A. z e. A E. w e. y z C_ w <-> A. z e. A E. w e. A z C_ w ) ) |
| 15 | 12 14 | anbi12d | |- ( y = A -> ( ( y C_ A /\ A. z e. A E. w e. y z C_ w ) <-> ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) ) |
| 16 | 11 15 | anbi12d | |- ( y = A -> ( ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) <-> ( x = ( card ` A ) /\ ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) ) ) |
| 17 | 16 | spcegv | |- ( A e. On -> ( ( x = ( card ` A ) /\ ( A C_ A /\ A. z e. A E. w e. A z C_ w ) ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 18 | 9 17 | mpan2i | |- ( A e. On -> ( x = ( card ` A ) -> E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) ) ) |
| 19 | 18 | ss2abdv | |- ( A e. On -> { x | x = ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 20 | 2 19 | eqsstrid | |- ( A e. On -> { ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } ) |
| 21 | intss | |- ( { ( card ` A ) } C_ { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ |^| { ( card ` A ) } ) |
|
| 22 | 20 21 | syl | |- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ |^| { ( card ` A ) } ) |
| 23 | fvex | |- ( card ` A ) e. _V |
|
| 24 | 23 | intsn | |- |^| { ( card ` A ) } = ( card ` A ) |
| 25 | 22 24 | sseqtrdi | |- ( A e. On -> |^| { x | E. y ( x = ( card ` y ) /\ ( y C_ A /\ A. z e. A E. w e. y z C_ w ) ) } C_ ( card ` A ) ) |
| 26 | 1 25 | eqsstrd | |- ( A e. On -> ( cf ` A ) C_ ( card ` A ) ) |
| 27 | cff | |- cf : On --> On |
|
| 28 | 27 | fdmi | |- dom cf = On |
| 29 | 28 | eleq2i | |- ( A e. dom cf <-> A e. On ) |
| 30 | ndmfv | |- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
|
| 31 | 29 30 | sylnbir | |- ( -. A e. On -> ( cf ` A ) = (/) ) |
| 32 | 0ss | |- (/) C_ ( card ` A ) |
|
| 33 | 31 32 | eqsstrdi | |- ( -. A e. On -> ( cf ` A ) C_ ( card ` A ) ) |
| 34 | 26 33 | pm2.61i | |- ( cf ` A ) C_ ( card ` A ) |