This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofinv.3 | |- ( ph -> B e. W ) |
||
| caofinv.4 | |- ( ph -> N : S --> S ) |
||
| caofinv.5 | |- ( ph -> G = ( v e. A |-> ( N ` ( F ` v ) ) ) ) |
||
| caofinvl.6 | |- ( ( ph /\ x e. S ) -> ( ( N ` x ) R x ) = B ) |
||
| Assertion | caofinvl | |- ( ph -> ( G oF R F ) = ( A X. { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofinv.3 | |- ( ph -> B e. W ) |
|
| 4 | caofinv.4 | |- ( ph -> N : S --> S ) |
|
| 5 | caofinv.5 | |- ( ph -> G = ( v e. A |-> ( N ` ( F ` v ) ) ) ) |
|
| 6 | caofinvl.6 | |- ( ( ph /\ x e. S ) -> ( ( N ` x ) R x ) = B ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ v e. A ) -> N : S --> S ) |
| 8 | 2 | ffvelcdmda | |- ( ( ph /\ v e. A ) -> ( F ` v ) e. S ) |
| 9 | 7 8 | ffvelcdmd | |- ( ( ph /\ v e. A ) -> ( N ` ( F ` v ) ) e. S ) |
| 10 | 5 9 | fmpt3d | |- ( ph -> G : A --> S ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 12 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 13 | fvex | |- ( N ` ( F ` v ) ) e. _V |
|
| 14 | eqid | |- ( v e. A |-> ( N ` ( F ` v ) ) ) = ( v e. A |-> ( N ` ( F ` v ) ) ) |
|
| 15 | 13 14 | fnmpti | |- ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A |
| 16 | 5 | fneq1d | |- ( ph -> ( G Fn A <-> ( v e. A |-> ( N ` ( F ` v ) ) ) Fn A ) ) |
| 17 | 15 16 | mpbiri | |- ( ph -> G Fn A ) |
| 18 | dffn5 | |- ( G Fn A <-> G = ( w e. A |-> ( G ` w ) ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 20 | 2 | feqmptd | |- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 21 | 1 11 12 19 20 | offval2 | |- ( ph -> ( G oF R F ) = ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) ) |
| 22 | 5 | fveq1d | |- ( ph -> ( G ` w ) = ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) ) |
| 23 | 2fveq3 | |- ( v = w -> ( N ` ( F ` v ) ) = ( N ` ( F ` w ) ) ) |
|
| 24 | fvex | |- ( N ` ( F ` w ) ) e. _V |
|
| 25 | 23 14 24 | fvmpt | |- ( w e. A -> ( ( v e. A |-> ( N ` ( F ` v ) ) ) ` w ) = ( N ` ( F ` w ) ) ) |
| 26 | 22 25 | sylan9eq | |- ( ( ph /\ w e. A ) -> ( G ` w ) = ( N ` ( F ` w ) ) ) |
| 27 | 26 | oveq1d | |- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
| 28 | fveq2 | |- ( x = ( F ` w ) -> ( N ` x ) = ( N ` ( F ` w ) ) ) |
|
| 29 | id | |- ( x = ( F ` w ) -> x = ( F ` w ) ) |
|
| 30 | 28 29 | oveq12d | |- ( x = ( F ` w ) -> ( ( N ` x ) R x ) = ( ( N ` ( F ` w ) ) R ( F ` w ) ) ) |
| 31 | 30 | eqeq1d | |- ( x = ( F ` w ) -> ( ( ( N ` x ) R x ) = B <-> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) ) |
| 32 | 6 | ralrimiva | |- ( ph -> A. x e. S ( ( N ` x ) R x ) = B ) |
| 33 | 32 | adantr | |- ( ( ph /\ w e. A ) -> A. x e. S ( ( N ` x ) R x ) = B ) |
| 34 | 31 33 12 | rspcdva | |- ( ( ph /\ w e. A ) -> ( ( N ` ( F ` w ) ) R ( F ` w ) ) = B ) |
| 35 | 27 34 | eqtrd | |- ( ( ph /\ w e. A ) -> ( ( G ` w ) R ( F ` w ) ) = B ) |
| 36 | 35 | mpteq2dva | |- ( ph -> ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) = ( w e. A |-> B ) ) |
| 37 | 21 36 | eqtrd | |- ( ph -> ( G oF R F ) = ( w e. A |-> B ) ) |
| 38 | fconstmpt | |- ( A X. { B } ) = ( w e. A |-> B ) |
|
| 39 | 37 38 | eqtr4di | |- ( ph -> ( G oF R F ) = ( A X. { B } ) ) |