This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofinv.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| caofinv.4 | ⊢ ( 𝜑 → 𝑁 : 𝑆 ⟶ 𝑆 ) | ||
| caofinv.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) | ||
| caofinvl.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) | ||
| Assertion | caofinvl | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝐴 × { 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofinv.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 4 | caofinv.4 | ⊢ ( 𝜑 → 𝑁 : 𝑆 ⟶ 𝑆 ) | |
| 5 | caofinv.5 | ⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) | |
| 6 | caofinvl.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑁 : 𝑆 ⟶ 𝑆 ) |
| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) ∈ 𝑆 ) |
| 9 | 7 8 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ∈ 𝑆 ) |
| 10 | 5 9 | fmpt3d | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
| 12 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 13 | fvex | ⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ∈ V | |
| 14 | eqid | ⊢ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) | |
| 15 | 13 14 | fnmpti | ⊢ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) Fn 𝐴 |
| 16 | 5 | fneq1d | ⊢ ( 𝜑 → ( 𝐺 Fn 𝐴 ↔ ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) Fn 𝐴 ) ) |
| 17 | 15 16 | mpbiri | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 18 | dffn5 | ⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) | |
| 19 | 17 18 | sylib | ⊢ ( 𝜑 → 𝐺 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑤 ) ) ) |
| 20 | 2 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑤 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 21 | 1 11 12 19 20 | offval2 | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 22 | 5 | fveq1d | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑤 ) = ( ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ‘ 𝑤 ) ) |
| 23 | 2fveq3 | ⊢ ( 𝑣 = 𝑤 → ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 24 | fvex | ⊢ ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ∈ V | |
| 25 | 23 14 24 | fvmpt | ⊢ ( 𝑤 ∈ 𝐴 → ( ( 𝑣 ∈ 𝐴 ↦ ( 𝑁 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ‘ 𝑤 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 26 | 22 25 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 29 | id | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → 𝑥 = ( 𝐹 ‘ 𝑤 ) ) | |
| 30 | 28 29 | oveq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) |
| 31 | 30 | eqeq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ↔ ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) ) |
| 32 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑁 ‘ 𝑥 ) 𝑅 𝑥 ) = 𝐵 ) |
| 34 | 31 33 12 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑤 ) ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) |
| 35 | 27 34 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐵 ) |
| 36 | 35 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑤 ) 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) ) |
| 37 | 21 36 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) ) |
| 38 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑤 ∈ 𝐴 ↦ 𝐵 ) | |
| 39 | 37 38 | eqtr4di | ⊢ ( 𝜑 → ( 𝐺 ∘f 𝑅 𝐹 ) = ( 𝐴 × { 𝐵 } ) ) |