This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opfi1uzind.e | |- E e. _V |
|
| opfi1uzind.f | |- F e. _V |
||
| opfi1uzind.l | |- L e. NN0 |
||
| opfi1uzind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
||
| opfi1uzind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
||
| opfi1uzind.3 | |- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
||
| opfi1uzind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
||
| opfi1uzind.base | |- ( ( <. v , e >. e. G /\ ( # ` v ) = L ) -> ps ) |
||
| opfi1uzind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
||
| Assertion | opfi1uzind | |- ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | |- E e. _V |
|
| 2 | opfi1uzind.f | |- F e. _V |
|
| 3 | opfi1uzind.l | |- L e. NN0 |
|
| 4 | opfi1uzind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
|
| 5 | opfi1uzind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
|
| 6 | opfi1uzind.3 | |- ( ( <. v , e >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
|
| 7 | opfi1uzind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
|
| 8 | opfi1uzind.base | |- ( ( <. v , e >. e. G /\ ( # ` v ) = L ) -> ps ) |
|
| 9 | opfi1uzind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
|
| 10 | 1 | a1i | |- ( a = V -> E e. _V ) |
| 11 | opeq12 | |- ( ( a = V /\ b = E ) -> <. a , b >. = <. V , E >. ) |
|
| 12 | 11 | eleq1d | |- ( ( a = V /\ b = E ) -> ( <. a , b >. e. G <-> <. V , E >. e. G ) ) |
| 13 | 10 12 | sbcied | |- ( a = V -> ( [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) |
| 14 | 13 | sbcieg | |- ( V e. Fin -> ( [. V / a ]. [. E / b ]. <. a , b >. e. G <-> <. V , E >. e. G ) ) |
| 15 | 14 | biimparc | |- ( ( <. V , E >. e. G /\ V e. Fin ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) |
| 16 | 15 | 3adant3 | |- ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> [. V / a ]. [. E / b ]. <. a , b >. e. G ) |
| 17 | vex | |- v e. _V |
|
| 18 | vex | |- e e. _V |
|
| 19 | opeq12 | |- ( ( a = v /\ b = e ) -> <. a , b >. = <. v , e >. ) |
|
| 20 | 19 | eleq1d | |- ( ( a = v /\ b = e ) -> ( <. a , b >. e. G <-> <. v , e >. e. G ) ) |
| 21 | 17 18 20 | sbc2ie | |- ( [. v / a ]. [. e / b ]. <. a , b >. e. G <-> <. v , e >. e. G ) |
| 22 | 21 6 | sylanb | |- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> <. ( v \ { n } ) , F >. e. G ) |
| 23 | 17 | difexi | |- ( v \ { n } ) e. _V |
| 24 | opeq12 | |- ( ( a = ( v \ { n } ) /\ b = F ) -> <. a , b >. = <. ( v \ { n } ) , F >. ) |
|
| 25 | 24 | eleq1d | |- ( ( a = ( v \ { n } ) /\ b = F ) -> ( <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) ) |
| 26 | 23 2 25 | sbc2ie | |- ( [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G <-> <. ( v \ { n } ) , F >. e. G ) |
| 27 | 22 26 | sylibr | |- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. <. a , b >. e. G ) |
| 28 | 21 8 | sylanb | |- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = L ) -> ps ) |
| 29 | 21 | 3anbi1i | |- ( ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) <-> ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) |
| 30 | 29 | anbi2i | |- ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) <-> ( ( y + 1 ) e. NN0 /\ ( <. v , e >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) |
| 31 | 30 9 | sylanb | |- ( ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. <. a , b >. e. G /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
| 32 | 2 3 4 5 27 7 28 31 | fi1uzind | |- ( ( [. V / a ]. [. E / b ]. <. a , b >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
| 33 | 16 32 | syld3an1 | |- ( ( <. V , E >. e. G /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |