This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with L = 0 (see brfi1ind ) or L = 1 . (Contributed by Alexander van der Vekens, 7-Jan-2018) (Proof shortened by AV, 23-Oct-2020) (Revised by AV, 28-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brfi1uzind.r | |- Rel G |
|
| brfi1uzind.f | |- F e. _V |
||
| brfi1uzind.l | |- L e. NN0 |
||
| brfi1uzind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
||
| brfi1uzind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
||
| brfi1uzind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
||
| brfi1uzind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
||
| brfi1uzind.base | |- ( ( v G e /\ ( # ` v ) = L ) -> ps ) |
||
| brfi1uzind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
||
| Assertion | brfi1uzind | |- ( ( V G E /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfi1uzind.r | |- Rel G |
|
| 2 | brfi1uzind.f | |- F e. _V |
|
| 3 | brfi1uzind.l | |- L e. NN0 |
|
| 4 | brfi1uzind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
|
| 5 | brfi1uzind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
|
| 6 | brfi1uzind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
|
| 7 | brfi1uzind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
|
| 8 | brfi1uzind.base | |- ( ( v G e /\ ( # ` v ) = L ) -> ps ) |
|
| 9 | brfi1uzind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
|
| 10 | 1 | brrelex12i | |- ( V G E -> ( V e. _V /\ E e. _V ) ) |
| 11 | simpl | |- ( ( V e. _V /\ E e. _V ) -> V e. _V ) |
|
| 12 | simplr | |- ( ( ( V e. _V /\ E e. _V ) /\ a = V ) -> E e. _V ) |
|
| 13 | breq12 | |- ( ( a = V /\ b = E ) -> ( a G b <-> V G E ) ) |
|
| 14 | 13 | adantll | |- ( ( ( ( V e. _V /\ E e. _V ) /\ a = V ) /\ b = E ) -> ( a G b <-> V G E ) ) |
| 15 | 12 14 | sbcied | |- ( ( ( V e. _V /\ E e. _V ) /\ a = V ) -> ( [. E / b ]. a G b <-> V G E ) ) |
| 16 | 11 15 | sbcied | |- ( ( V e. _V /\ E e. _V ) -> ( [. V / a ]. [. E / b ]. a G b <-> V G E ) ) |
| 17 | 16 | biimprcd | |- ( V G E -> ( ( V e. _V /\ E e. _V ) -> [. V / a ]. [. E / b ]. a G b ) ) |
| 18 | 10 17 | mpd | |- ( V G E -> [. V / a ]. [. E / b ]. a G b ) |
| 19 | vex | |- v e. _V |
|
| 20 | vex | |- e e. _V |
|
| 21 | breq12 | |- ( ( a = v /\ b = e ) -> ( a G b <-> v G e ) ) |
|
| 22 | 19 20 21 | sbc2ie | |- ( [. v / a ]. [. e / b ]. a G b <-> v G e ) |
| 23 | 19 | difexi | |- ( v \ { n } ) e. _V |
| 24 | breq12 | |- ( ( a = ( v \ { n } ) /\ b = F ) -> ( a G b <-> ( v \ { n } ) G F ) ) |
|
| 25 | 23 2 24 | sbc2ie | |- ( [. ( v \ { n } ) / a ]. [. F / b ]. a G b <-> ( v \ { n } ) G F ) |
| 26 | 6 25 | sylibr | |- ( ( v G e /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. a G b ) |
| 27 | 22 26 | sylanb | |- ( ( [. v / a ]. [. e / b ]. a G b /\ n e. v ) -> [. ( v \ { n } ) / a ]. [. F / b ]. a G b ) |
| 28 | 22 8 | sylanb | |- ( ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = L ) -> ps ) |
| 29 | 22 | 3anbi1i | |- ( ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) <-> ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) |
| 30 | 29 | anbi2i | |- ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) <-> ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) |
| 31 | 30 9 | sylanb | |- ( ( ( ( y + 1 ) e. NN0 /\ ( [. v / a ]. [. e / b ]. a G b /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
| 32 | 2 3 4 5 27 7 28 31 | fi1uzind | |- ( ( [. V / a ]. [. E / b ]. a G b /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |
| 33 | 18 32 | syl3an1 | |- ( ( V G E /\ V e. Fin /\ L <_ ( # ` V ) ) -> ph ) |