This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is greater than zero, then the set must contain at least one element. (Contributed by Alexander van der Vekens, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt0elex | |- ( ( V e. W /\ 0 < ( # ` V ) ) -> E. x x e. V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex | |- ( A. x -. x e. V <-> -. E. x x e. V ) |
|
| 2 | eq0 | |- ( V = (/) <-> A. x -. x e. V ) |
|
| 3 | 2 | biimpri | |- ( A. x -. x e. V -> V = (/) ) |
| 4 | 3 | a1d | |- ( A. x -. x e. V -> ( V e. W -> V = (/) ) ) |
| 5 | 1 4 | sylbir | |- ( -. E. x x e. V -> ( V e. W -> V = (/) ) ) |
| 6 | 5 | impcom | |- ( ( V e. W /\ -. E. x x e. V ) -> V = (/) ) |
| 7 | hashle00 | |- ( V e. W -> ( ( # ` V ) <_ 0 <-> V = (/) ) ) |
|
| 8 | 7 | adantr | |- ( ( V e. W /\ -. E. x x e. V ) -> ( ( # ` V ) <_ 0 <-> V = (/) ) ) |
| 9 | 6 8 | mpbird | |- ( ( V e. W /\ -. E. x x e. V ) -> ( # ` V ) <_ 0 ) |
| 10 | hashxrcl | |- ( V e. W -> ( # ` V ) e. RR* ) |
|
| 11 | 0xr | |- 0 e. RR* |
|
| 12 | xrlenlt | |- ( ( ( # ` V ) e. RR* /\ 0 e. RR* ) -> ( ( # ` V ) <_ 0 <-> -. 0 < ( # ` V ) ) ) |
|
| 13 | 10 11 12 | sylancl | |- ( V e. W -> ( ( # ` V ) <_ 0 <-> -. 0 < ( # ` V ) ) ) |
| 14 | 13 | bicomd | |- ( V e. W -> ( -. 0 < ( # ` V ) <-> ( # ` V ) <_ 0 ) ) |
| 15 | 14 | adantr | |- ( ( V e. W /\ -. E. x x e. V ) -> ( -. 0 < ( # ` V ) <-> ( # ` V ) <_ 0 ) ) |
| 16 | 9 15 | mpbird | |- ( ( V e. W /\ -. E. x x e. V ) -> -. 0 < ( # ` V ) ) |
| 17 | 16 | ex | |- ( V e. W -> ( -. E. x x e. V -> -. 0 < ( # ` V ) ) ) |
| 18 | 17 | con4d | |- ( V e. W -> ( 0 < ( # ` V ) -> E. x x e. V ) ) |
| 19 | 18 | imp | |- ( ( V e. W /\ 0 < ( # ` V ) ) -> E. x x e. V ) |