This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bracnlnval | |- ( T e. ( LinFn i^i ContFn ) -> T = ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvbraval | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) |
|
| 2 | cnvbracl | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) |
|
| 3 | 1 2 | eqeltrrd | |- ( T e. ( LinFn i^i ContFn ) -> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) e. ~H ) |
| 4 | bra11 | |- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |
|
| 5 | f1ocnvfvb | |- ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) e. ~H /\ T e. ( LinFn i^i ContFn ) ) -> ( ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) = T <-> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) ) |
|
| 6 | 4 5 | mp3an1 | |- ( ( ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) e. ~H /\ T e. ( LinFn i^i ContFn ) ) -> ( ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) = T <-> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) ) |
| 7 | 3 6 | mpancom | |- ( T e. ( LinFn i^i ContFn ) -> ( ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) = T <-> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) ) |
| 8 | 1 7 | mpbird | |- ( T e. ( LinFn i^i ContFn ) -> ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) = T ) |
| 9 | 8 | eqcomd | |- ( T e. ( LinFn i^i ContFn ) -> T = ( bra ` ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) ) |