This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bra11 | |- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 | mptex | |- ( y e. ~H |-> ( y .ih x ) ) e. _V |
| 3 | df-bra | |- bra = ( x e. ~H |-> ( y e. ~H |-> ( y .ih x ) ) ) |
|
| 4 | 2 3 | fnmpti | |- bra Fn ~H |
| 5 | rnbra | |- ran bra = ( LinFn i^i ContFn ) |
|
| 6 | fveq1 | |- ( ( bra ` x ) = ( bra ` y ) -> ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) ) |
|
| 7 | braval | |- ( ( x e. ~H /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
|
| 8 | 7 | adantlr | |- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) ` z ) = ( z .ih x ) ) |
| 9 | braval | |- ( ( y e. ~H /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
|
| 10 | 9 | adantll | |- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` y ) ` z ) = ( z .ih y ) ) |
| 11 | 8 10 | eqeq12d | |- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( ( bra ` x ) ` z ) = ( ( bra ` y ) ` z ) <-> ( z .ih x ) = ( z .ih y ) ) ) |
| 12 | 6 11 | imbitrid | |- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> ( z .ih x ) = ( z .ih y ) ) ) |
| 13 | 12 | ralrimdva | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> A. z e. ~H ( z .ih x ) = ( z .ih y ) ) ) |
| 14 | hial2eq2 | |- ( ( x e. ~H /\ y e. ~H ) -> ( A. z e. ~H ( z .ih x ) = ( z .ih y ) <-> x = y ) ) |
|
| 15 | 13 14 | sylibd | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) |
| 16 | 15 | rgen2 | |- A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) |
| 17 | dff1o6 | |- ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) <-> ( bra Fn ~H /\ ran bra = ( LinFn i^i ContFn ) /\ A. x e. ~H A. y e. ~H ( ( bra ` x ) = ( bra ` y ) -> x = y ) ) ) |
|
| 18 | 4 5 16 17 | mpbir3an | |- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |