This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector that a continuous linear functional is the bra of. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bracnlnval | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → 𝑇 = ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvbraval | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 2 | cnvbracl | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ◡ bra ‘ 𝑇 ) ∈ ℋ ) | |
| 3 | 1 2 | eqeltrrd | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ∈ ℋ ) |
| 4 | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) | |
| 5 | f1ocnvfvb | ⊢ ( ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ∧ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ∈ ℋ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) = 𝑇 ↔ ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) ) | |
| 6 | 4 5 | mp3an1 | ⊢ ( ( ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ∈ ℋ ∧ 𝑇 ∈ ( LinFn ∩ ContFn ) ) → ( ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) = 𝑇 ↔ ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
| 7 | 3 6 | mpancom | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) = 𝑇 ↔ ( ◡ bra ‘ 𝑇 ) = ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
| 8 | 1 7 | mpbird | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) = 𝑇 ) |
| 9 | 8 | eqcomd | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → 𝑇 = ( bra ‘ ( ℩ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |