This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the converse of the bra function. Based on the Riesz Lemma riesz4 , this very important theorem not only justifies the Dirac bra-ket notation, but allows to extract a unique vector from any continuous linear functional from which the functional can be recovered; i.e. a single vector can "store"all of the information contained in any entire continuous linear functional (mapping from ~H to CC ). (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvbraval | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bra11 | |- bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) |
|
| 2 | f1ocnvfv | |- ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ y e. ~H ) -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) |
|
| 3 | 1 2 | mpan | |- ( y e. ~H -> ( ( bra ` y ) = T -> ( `' bra ` T ) = y ) ) |
| 4 | 3 | imp | |- ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( `' bra ` T ) = y ) |
| 5 | 4 | oveq2d | |- ( ( y e. ~H /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) |
| 6 | 5 | adantll | |- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( x .ih ( `' bra ` T ) ) = ( x .ih y ) ) |
| 7 | braval | |- ( ( y e. ~H /\ x e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
|
| 8 | 7 | ancoms | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
| 9 | 8 | adantll | |- ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
| 10 | 9 | adantr | |- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( x .ih y ) ) |
| 11 | fveq1 | |- ( ( bra ` y ) = T -> ( ( bra ` y ) ` x ) = ( T ` x ) ) |
|
| 12 | 11 | adantl | |- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( ( bra ` y ) ` x ) = ( T ` x ) ) |
| 13 | 6 10 12 | 3eqtr2rd | |- ( ( ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) /\ y e. ~H ) /\ ( bra ` y ) = T ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
| 14 | rnbra | |- ran bra = ( LinFn i^i ContFn ) |
|
| 15 | 14 | eleq2i | |- ( T e. ran bra <-> T e. ( LinFn i^i ContFn ) ) |
| 16 | f1of | |- ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) -> bra : ~H --> ( LinFn i^i ContFn ) ) |
|
| 17 | 1 16 | ax-mp | |- bra : ~H --> ( LinFn i^i ContFn ) |
| 18 | ffn | |- ( bra : ~H --> ( LinFn i^i ContFn ) -> bra Fn ~H ) |
|
| 19 | 17 18 | ax-mp | |- bra Fn ~H |
| 20 | fvelrnb | |- ( bra Fn ~H -> ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) ) |
|
| 21 | 19 20 | ax-mp | |- ( T e. ran bra <-> E. y e. ~H ( bra ` y ) = T ) |
| 22 | 15 21 | sylbb1 | |- ( T e. ( LinFn i^i ContFn ) -> E. y e. ~H ( bra ` y ) = T ) |
| 23 | 22 | adantr | |- ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> E. y e. ~H ( bra ` y ) = T ) |
| 24 | 13 23 | r19.29a | |- ( ( T e. ( LinFn i^i ContFn ) /\ x e. ~H ) -> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
| 25 | 24 | ralrimiva | |- ( T e. ( LinFn i^i ContFn ) -> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) |
| 26 | f1ocnvdm | |- ( ( bra : ~H -1-1-onto-> ( LinFn i^i ContFn ) /\ T e. ( LinFn i^i ContFn ) ) -> ( `' bra ` T ) e. ~H ) |
|
| 27 | 1 26 | mpan | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) e. ~H ) |
| 28 | riesz4 | |- ( T e. ( LinFn i^i ContFn ) -> E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) |
|
| 29 | oveq2 | |- ( y = ( `' bra ` T ) -> ( x .ih y ) = ( x .ih ( `' bra ` T ) ) ) |
|
| 30 | 29 | eqeq2d | |- ( y = ( `' bra ` T ) -> ( ( T ` x ) = ( x .ih y ) <-> ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) |
| 31 | 30 | ralbidv | |- ( y = ( `' bra ` T ) -> ( A. x e. ~H ( T ` x ) = ( x .ih y ) <-> A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) ) ) |
| 32 | 31 | riota2 | |- ( ( ( `' bra ` T ) e. ~H /\ E! y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) |
| 33 | 27 28 32 | syl2anc | |- ( T e. ( LinFn i^i ContFn ) -> ( A. x e. ~H ( T ` x ) = ( x .ih ( `' bra ` T ) ) <-> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) ) |
| 34 | 25 33 | mpbid | |- ( T e. ( LinFn i^i ContFn ) -> ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) = ( `' bra ` T ) ) |
| 35 | 34 | eqcomd | |- ( T e. ( LinFn i^i ContFn ) -> ( `' bra ` T ) = ( iota_ y e. ~H A. x e. ~H ( T ` x ) = ( x .ih y ) ) ) |