This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem7t.1 | |- A e. ~H |
|
| normlem7t.2 | |- B e. ~H |
||
| Assertion | normlem7tALT | |- ( ( S e. CC /\ ( abs ` S ) = 1 ) -> ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem7t.1 | |- A e. ~H |
|
| 2 | normlem7t.2 | |- B e. ~H |
|
| 3 | fveq2 | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( * ` S ) = ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
|
| 4 | 3 | oveq1d | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( * ` S ) x. ( A .ih B ) ) = ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) ) |
| 5 | oveq1 | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( S x. ( B .ih A ) ) = ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) |
|
| 6 | 4 5 | oveq12d | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) = ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) ) |
| 7 | 6 | breq1d | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) <-> ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) ) |
| 8 | eleq1 | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( S e. CC <-> if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC ) ) |
|
| 9 | fveq2 | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( abs ` S ) = ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
|
| 10 | 9 | eqeq1d | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( abs ` S ) = 1 <-> ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) |
| 11 | 8 10 | anbi12d | |- ( S = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( S e. CC /\ ( abs ` S ) = 1 ) <-> ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) ) |
| 12 | eleq1 | |- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( 1 e. CC <-> if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC ) ) |
|
| 13 | fveq2 | |- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( abs ` 1 ) = ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) ) |
|
| 14 | 13 | eqeq1d | |- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( abs ` 1 ) = 1 <-> ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) |
| 15 | 12 14 | anbi12d | |- ( 1 = if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) -> ( ( 1 e. CC /\ ( abs ` 1 ) = 1 ) <-> ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) ) ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 18 | 16 17 | pm3.2i | |- ( 1 e. CC /\ ( abs ` 1 ) = 1 ) |
| 19 | 11 15 18 | elimhyp | |- ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC /\ ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 ) |
| 20 | 19 | simpli | |- if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) e. CC |
| 21 | 19 | simpri | |- ( abs ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) = 1 |
| 22 | 20 1 2 21 | normlem7 | |- ( ( ( * ` if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) ) x. ( A .ih B ) ) + ( if ( ( S e. CC /\ ( abs ` S ) = 1 ) , S , 1 ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) |
| 23 | 7 22 | dedth | |- ( ( S e. CC /\ ( abs ` S ) = 1 ) -> ( ( ( * ` S ) x. ( A .ih B ) ) + ( S x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) |