This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abslem2 | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( 2 x. ( abs ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absvalsq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 3 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 4 | 3 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 5 | 4 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 6 | 5 | sqvald | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 7 | 2 6 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( A x. ( * ` A ) ) = ( ( abs ` A ) x. ( abs ` A ) ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) ) |
| 9 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 10 | 9 | cjcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
| 11 | abs00 | |- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
|
| 12 | 11 | necon3bid | |- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 13 | 12 | biimpar | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 14 | 9 10 5 13 | div23d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / ( abs ` A ) ) = ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) |
| 15 | 5 5 13 | divcan3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) x. ( abs ` A ) ) / ( abs ` A ) ) = ( abs ` A ) ) |
| 16 | 8 14 15 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( A / ( abs ` A ) ) x. ( * ` A ) ) = ( abs ` A ) ) |
| 17 | 16 | fveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( * ` ( abs ` A ) ) ) |
| 18 | 9 5 13 | divcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( A / ( abs ` A ) ) e. CC ) |
| 19 | 18 10 | cjmuld | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) ) |
| 20 | 9 | cjcjd | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( * ` A ) ) = A ) |
| 21 | 20 | oveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. ( * ` ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) |
| 22 | 19 21 | eqtrd | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( * ` ( A / ( abs ` A ) ) ) x. A ) ) |
| 23 | 4 | cjred | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` ( abs ` A ) ) = ( abs ` A ) ) |
| 24 | 17 22 23 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` ( A / ( abs ` A ) ) ) x. A ) = ( abs ` A ) ) |
| 25 | 24 16 | oveq12d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) |
| 26 | 5 | 2timesd | |- ( ( A e. CC /\ A =/= 0 ) -> ( 2 x. ( abs ` A ) ) = ( ( abs ` A ) + ( abs ` A ) ) ) |
| 27 | 25 26 | eqtr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( * ` ( A / ( abs ` A ) ) ) x. A ) + ( ( A / ( abs ` A ) ) x. ( * ` A ) ) ) = ( 2 x. ( abs ` A ) ) ) |