This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcs2 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( abs ` ( A .ih B ) ) <_ ( normh ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) |
|
| 2 | 1 | abscld | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) e. RR ) |
| 3 | 2 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( abs ` ( A .ih B ) ) e. RR ) |
| 4 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 5 | normcl | |- ( B e. ~H -> ( normh ` B ) e. RR ) |
|
| 6 | remulcl | |- ( ( ( normh ` A ) e. RR /\ ( normh ` B ) e. RR ) -> ( ( normh ` A ) x. ( normh ` B ) ) e. RR ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( normh ` A ) x. ( normh ` B ) ) e. RR ) |
| 8 | 7 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` A ) x. ( normh ` B ) ) e. RR ) |
| 9 | 5 | 3ad2ant2 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( normh ` B ) e. RR ) |
| 10 | bcs | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
|
| 11 | 10 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) |
| 12 | 4 | 3ad2ant1 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( normh ` A ) e. RR ) |
| 13 | normge0 | |- ( B e. ~H -> 0 <_ ( normh ` B ) ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> 0 <_ ( normh ` B ) ) |
| 15 | 9 14 | jca | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` B ) e. RR /\ 0 <_ ( normh ` B ) ) ) |
| 16 | simp3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( normh ` A ) <_ 1 ) |
|
| 17 | 1re | |- 1 e. RR |
|
| 18 | lemul1a | |- ( ( ( ( normh ` A ) e. RR /\ 1 e. RR /\ ( ( normh ` B ) e. RR /\ 0 <_ ( normh ` B ) ) ) /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` A ) x. ( normh ` B ) ) <_ ( 1 x. ( normh ` B ) ) ) |
|
| 19 | 17 18 | mp3anl2 | |- ( ( ( ( normh ` A ) e. RR /\ ( ( normh ` B ) e. RR /\ 0 <_ ( normh ` B ) ) ) /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` A ) x. ( normh ` B ) ) <_ ( 1 x. ( normh ` B ) ) ) |
| 20 | 12 15 16 19 | syl21anc | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` A ) x. ( normh ` B ) ) <_ ( 1 x. ( normh ` B ) ) ) |
| 21 | 5 | recnd | |- ( B e. ~H -> ( normh ` B ) e. CC ) |
| 22 | 21 | mullidd | |- ( B e. ~H -> ( 1 x. ( normh ` B ) ) = ( normh ` B ) ) |
| 23 | 22 | 3ad2ant2 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( 1 x. ( normh ` B ) ) = ( normh ` B ) ) |
| 24 | 20 23 | breqtrd | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( ( normh ` A ) x. ( normh ` B ) ) <_ ( normh ` B ) ) |
| 25 | 3 8 9 11 24 | letrd | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` A ) <_ 1 ) -> ( abs ` ( A .ih B ) ) <_ ( normh ` B ) ) |