This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcs3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` B ) <_ 1 ) -> ( abs ` ( A .ih B ) ) <_ ( normh ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abshicom | |- ( ( A e. ~H /\ B e. ~H ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( B .ih A ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` B ) <_ 1 ) -> ( abs ` ( A .ih B ) ) = ( abs ` ( B .ih A ) ) ) |
| 3 | bcs2 | |- ( ( B e. ~H /\ A e. ~H /\ ( normh ` B ) <_ 1 ) -> ( abs ` ( B .ih A ) ) <_ ( normh ` A ) ) |
|
| 4 | 3 | 3com12 | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` B ) <_ 1 ) -> ( abs ` ( B .ih A ) ) <_ ( normh ` A ) ) |
| 5 | 2 4 | eqbrtrd | |- ( ( A e. ~H /\ B e. ~H /\ ( normh ` B ) <_ 1 ) -> ( abs ` ( A .ih B ) ) <_ ( normh ` A ) ) |