This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the binomial coefficient " N choose 2 " from " ( N - 1 ) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn2m1 | |- ( N e. NN -> ( ( N - 1 ) + ( ( N - 1 ) _C 2 ) ) = ( N _C 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 2 | 1 | nn0cnd | |- ( N e. NN -> ( N - 1 ) e. CC ) |
| 3 | 2z | |- 2 e. ZZ |
|
| 4 | bccl | |- ( ( ( N - 1 ) e. NN0 /\ 2 e. ZZ ) -> ( ( N - 1 ) _C 2 ) e. NN0 ) |
|
| 5 | 1 3 4 | sylancl | |- ( N e. NN -> ( ( N - 1 ) _C 2 ) e. NN0 ) |
| 6 | 5 | nn0cnd | |- ( N e. NN -> ( ( N - 1 ) _C 2 ) e. CC ) |
| 7 | 2 6 | addcomd | |- ( N e. NN -> ( ( N - 1 ) + ( ( N - 1 ) _C 2 ) ) = ( ( ( N - 1 ) _C 2 ) + ( N - 1 ) ) ) |
| 8 | bcn1 | |- ( ( N - 1 ) e. NN0 -> ( ( N - 1 ) _C 1 ) = ( N - 1 ) ) |
|
| 9 | 8 | eqcomd | |- ( ( N - 1 ) e. NN0 -> ( N - 1 ) = ( ( N - 1 ) _C 1 ) ) |
| 10 | 1 9 | syl | |- ( N e. NN -> ( N - 1 ) = ( ( N - 1 ) _C 1 ) ) |
| 11 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 12 | 11 | a1i | |- ( N e. NN -> 1 = ( 2 - 1 ) ) |
| 13 | 12 | oveq2d | |- ( N e. NN -> ( ( N - 1 ) _C 1 ) = ( ( N - 1 ) _C ( 2 - 1 ) ) ) |
| 14 | 10 13 | eqtrd | |- ( N e. NN -> ( N - 1 ) = ( ( N - 1 ) _C ( 2 - 1 ) ) ) |
| 15 | 14 | oveq2d | |- ( N e. NN -> ( ( ( N - 1 ) _C 2 ) + ( N - 1 ) ) = ( ( ( N - 1 ) _C 2 ) + ( ( N - 1 ) _C ( 2 - 1 ) ) ) ) |
| 16 | bcpasc | |- ( ( ( N - 1 ) e. NN0 /\ 2 e. ZZ ) -> ( ( ( N - 1 ) _C 2 ) + ( ( N - 1 ) _C ( 2 - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C 2 ) ) |
|
| 17 | 1 3 16 | sylancl | |- ( N e. NN -> ( ( ( N - 1 ) _C 2 ) + ( ( N - 1 ) _C ( 2 - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C 2 ) ) |
| 18 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 19 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 20 | 18 19 | npcand | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 21 | 20 | oveq1d | |- ( N e. NN -> ( ( ( N - 1 ) + 1 ) _C 2 ) = ( N _C 2 ) ) |
| 22 | 17 21 | eqtrd | |- ( N e. NN -> ( ( ( N - 1 ) _C 2 ) + ( ( N - 1 ) _C ( 2 - 1 ) ) ) = ( N _C 2 ) ) |
| 23 | 7 15 22 | 3eqtrd | |- ( N e. NN -> ( ( N - 1 ) + ( ( N - 1 ) _C 2 ) ) = ( N _C 2 ) ) |