This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binomial coefficient: N choose 1 . (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn1 | |- ( N e. NN0 -> ( N _C 1 ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 3 | 2 | a1i | |- ( N e. NN -> 1 e. ( ZZ>= ` 0 ) ) |
| 4 | elnnuz | |- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
|
| 5 | 4 | biimpi | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 6 | elfzuzb | |- ( 1 e. ( 0 ... N ) <-> ( 1 e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` 1 ) ) ) |
|
| 7 | 3 5 6 | sylanbrc | |- ( N e. NN -> 1 e. ( 0 ... N ) ) |
| 8 | bcval2 | |- ( 1 e. ( 0 ... N ) -> ( N _C 1 ) = ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) ) |
|
| 9 | 7 8 | syl | |- ( N e. NN -> ( N _C 1 ) = ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) ) |
| 10 | facnn2 | |- ( N e. NN -> ( ! ` N ) = ( ( ! ` ( N - 1 ) ) x. N ) ) |
|
| 11 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 12 | 11 | oveq2i | |- ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) = ( ( ! ` ( N - 1 ) ) x. 1 ) |
| 13 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 14 | 13 | faccld | |- ( N e. NN -> ( ! ` ( N - 1 ) ) e. NN ) |
| 15 | 14 | nncnd | |- ( N e. NN -> ( ! ` ( N - 1 ) ) e. CC ) |
| 16 | 15 | mulridd | |- ( N e. NN -> ( ( ! ` ( N - 1 ) ) x. 1 ) = ( ! ` ( N - 1 ) ) ) |
| 17 | 12 16 | eqtrid | |- ( N e. NN -> ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) = ( ! ` ( N - 1 ) ) ) |
| 18 | 10 17 | oveq12d | |- ( N e. NN -> ( ( ! ` N ) / ( ( ! ` ( N - 1 ) ) x. ( ! ` 1 ) ) ) = ( ( ( ! ` ( N - 1 ) ) x. N ) / ( ! ` ( N - 1 ) ) ) ) |
| 19 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 20 | 14 | nnne0d | |- ( N e. NN -> ( ! ` ( N - 1 ) ) =/= 0 ) |
| 21 | 19 15 20 | divcan3d | |- ( N e. NN -> ( ( ( ! ` ( N - 1 ) ) x. N ) / ( ! ` ( N - 1 ) ) ) = N ) |
| 22 | 9 18 21 | 3eqtrd | |- ( N e. NN -> ( N _C 1 ) = N ) |
| 23 | 0nn0 | |- 0 e. NN0 |
|
| 24 | 1z | |- 1 e. ZZ |
|
| 25 | 0lt1 | |- 0 < 1 |
|
| 26 | 25 | olci | |- ( 1 < 0 \/ 0 < 1 ) |
| 27 | bcval4 | |- ( ( 0 e. NN0 /\ 1 e. ZZ /\ ( 1 < 0 \/ 0 < 1 ) ) -> ( 0 _C 1 ) = 0 ) |
|
| 28 | 23 24 26 27 | mp3an | |- ( 0 _C 1 ) = 0 |
| 29 | oveq1 | |- ( N = 0 -> ( N _C 1 ) = ( 0 _C 1 ) ) |
|
| 30 | eqeq12 | |- ( ( ( N _C 1 ) = ( 0 _C 1 ) /\ N = 0 ) -> ( ( N _C 1 ) = N <-> ( 0 _C 1 ) = 0 ) ) |
|
| 31 | 29 30 | mpancom | |- ( N = 0 -> ( ( N _C 1 ) = N <-> ( 0 _C 1 ) = 0 ) ) |
| 32 | 28 31 | mpbiri | |- ( N = 0 -> ( N _C 1 ) = N ) |
| 33 | 22 32 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( N _C 1 ) = N ) |
| 34 | 1 33 | sylbi | |- ( N e. NN0 -> ( N _C 1 ) = N ) |