This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compute the binomial coefficient " ( N + 1 ) choose 2 " from " N choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn2p1 | |- ( N e. NN0 -> ( N + ( N _C 2 ) ) = ( ( N + 1 ) _C 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 2 | 2z | |- 2 e. ZZ |
|
| 3 | bccl | |- ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N _C 2 ) e. NN0 ) |
|
| 4 | 2 3 | mpan2 | |- ( N e. NN0 -> ( N _C 2 ) e. NN0 ) |
| 5 | 4 | nn0cnd | |- ( N e. NN0 -> ( N _C 2 ) e. CC ) |
| 6 | 1 5 | addcomd | |- ( N e. NN0 -> ( N + ( N _C 2 ) ) = ( ( N _C 2 ) + N ) ) |
| 7 | bcn1 | |- ( N e. NN0 -> ( N _C 1 ) = N ) |
|
| 8 | 1e2m1 | |- 1 = ( 2 - 1 ) |
|
| 9 | 8 | a1i | |- ( N e. NN0 -> 1 = ( 2 - 1 ) ) |
| 10 | 9 | oveq2d | |- ( N e. NN0 -> ( N _C 1 ) = ( N _C ( 2 - 1 ) ) ) |
| 11 | 7 10 | eqtr3d | |- ( N e. NN0 -> N = ( N _C ( 2 - 1 ) ) ) |
| 12 | 11 | oveq2d | |- ( N e. NN0 -> ( ( N _C 2 ) + N ) = ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) ) |
| 13 | bcpasc | |- ( ( N e. NN0 /\ 2 e. ZZ ) -> ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) |
|
| 14 | 2 13 | mpan2 | |- ( N e. NN0 -> ( ( N _C 2 ) + ( N _C ( 2 - 1 ) ) ) = ( ( N + 1 ) _C 2 ) ) |
| 15 | 6 12 14 | 3eqtrd | |- ( N e. NN0 -> ( N + ( N _C 2 ) ) = ( ( N + 1 ) _C 2 ) ) |