This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binomial coefficient: N choose 1 . (Contributed by NM, 21-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn1 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 1 ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 2 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
| 4 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 5 | 4 | biimpi | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 6 | elfzuzb | ⊢ ( 1 ∈ ( 0 ... 𝑁 ) ↔ ( 1 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) ) | |
| 7 | 3 5 6 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 0 ... 𝑁 ) ) |
| 8 | bcval2 | ⊢ ( 1 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 1 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 1 ) ) · ( ! ‘ 1 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 C 1 ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 1 ) ) · ( ! ‘ 1 ) ) ) ) |
| 10 | facnn2 | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( ( ! ‘ ( 𝑁 − 1 ) ) · 𝑁 ) ) | |
| 11 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 12 | 11 | oveq2i | ⊢ ( ( ! ‘ ( 𝑁 − 1 ) ) · ( ! ‘ 1 ) ) = ( ( ! ‘ ( 𝑁 − 1 ) ) · 1 ) |
| 13 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 14 | 13 | faccld | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 − 1 ) ) ∈ ℕ ) |
| 15 | 14 | nncnd | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 − 1 ) ) ∈ ℂ ) |
| 16 | 15 | mulridd | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ ( 𝑁 − 1 ) ) · 1 ) = ( ! ‘ ( 𝑁 − 1 ) ) ) |
| 17 | 12 16 | eqtrid | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ ( 𝑁 − 1 ) ) · ( ! ‘ 1 ) ) = ( ! ‘ ( 𝑁 − 1 ) ) ) |
| 18 | 10 17 | oveq12d | ⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 1 ) ) · ( ! ‘ 1 ) ) ) = ( ( ( ! ‘ ( 𝑁 − 1 ) ) · 𝑁 ) / ( ! ‘ ( 𝑁 − 1 ) ) ) ) |
| 19 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 20 | 14 | nnne0d | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 − 1 ) ) ≠ 0 ) |
| 21 | 19 15 20 | divcan3d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ ( 𝑁 − 1 ) ) · 𝑁 ) / ( ! ‘ ( 𝑁 − 1 ) ) ) = 𝑁 ) |
| 22 | 9 18 21 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 C 1 ) = 𝑁 ) |
| 23 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 24 | 1z | ⊢ 1 ∈ ℤ | |
| 25 | 0lt1 | ⊢ 0 < 1 | |
| 26 | 25 | olci | ⊢ ( 1 < 0 ∨ 0 < 1 ) |
| 27 | bcval4 | ⊢ ( ( 0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ ( 1 < 0 ∨ 0 < 1 ) ) → ( 0 C 1 ) = 0 ) | |
| 28 | 23 24 26 27 | mp3an | ⊢ ( 0 C 1 ) = 0 |
| 29 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 C 1 ) = ( 0 C 1 ) ) | |
| 30 | eqeq12 | ⊢ ( ( ( 𝑁 C 1 ) = ( 0 C 1 ) ∧ 𝑁 = 0 ) → ( ( 𝑁 C 1 ) = 𝑁 ↔ ( 0 C 1 ) = 0 ) ) | |
| 31 | 29 30 | mpancom | ⊢ ( 𝑁 = 0 → ( ( 𝑁 C 1 ) = 𝑁 ↔ ( 0 C 1 ) = 0 ) ) |
| 32 | 28 31 | mpbiri | ⊢ ( 𝑁 = 0 → ( 𝑁 C 1 ) = 𝑁 ) |
| 33 | 22 32 | jaoi | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑁 C 1 ) = 𝑁 ) |
| 34 | 1 33 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 1 ) = 𝑁 ) |