This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-r | |- RR = ( R. X. { 0R } ) |
|
| 2 | 1 | eleq2i | |- ( A e. RR <-> A e. ( R. X. { 0R } ) ) |
| 3 | elxp2 | |- ( A e. ( R. X. { 0R } ) <-> E. x e. R. E. y e. { 0R } A = <. x , y >. ) |
|
| 4 | 0r | |- 0R e. R. |
|
| 5 | 4 | elexi | |- 0R e. _V |
| 6 | opeq2 | |- ( y = 0R -> <. x , y >. = <. x , 0R >. ) |
|
| 7 | 6 | eqeq2d | |- ( y = 0R -> ( A = <. x , y >. <-> A = <. x , 0R >. ) ) |
| 8 | 5 7 | rexsn | |- ( E. y e. { 0R } A = <. x , y >. <-> A = <. x , 0R >. ) |
| 9 | eqcom | |- ( A = <. x , 0R >. <-> <. x , 0R >. = A ) |
|
| 10 | 8 9 | bitri | |- ( E. y e. { 0R } A = <. x , y >. <-> <. x , 0R >. = A ) |
| 11 | 10 | rexbii | |- ( E. x e. R. E. y e. { 0R } A = <. x , y >. <-> E. x e. R. <. x , 0R >. = A ) |
| 12 | 3 11 | bitri | |- ( A e. ( R. X. { 0R } ) <-> E. x e. R. <. x , 0R >. = A ) |
| 13 | 2 12 | bitri | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |