This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpre-sup | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal2 | |- ( x e. RR <-> ( ( 1st ` x ) e. R. /\ x = <. ( 1st ` x ) , 0R >. ) ) |
|
| 2 | 1 | simplbi | |- ( x e. RR -> ( 1st ` x ) e. R. ) |
| 3 | 2 | adantl | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( 1st ` x ) e. R. ) |
| 4 | fo1st | |- 1st : _V -onto-> _V |
|
| 5 | fof | |- ( 1st : _V -onto-> _V -> 1st : _V --> _V ) |
|
| 6 | ffn | |- ( 1st : _V --> _V -> 1st Fn _V ) |
|
| 7 | 4 5 6 | mp2b | |- 1st Fn _V |
| 8 | ssv | |- A C_ _V |
|
| 9 | fvelimab | |- ( ( 1st Fn _V /\ A C_ _V ) -> ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w ) ) |
|
| 10 | 7 8 9 | mp2an | |- ( w e. ( 1st " A ) <-> E. y e. A ( 1st ` y ) = w ) |
| 11 | r19.29 | |- ( ( A. y e. A y |
|
| 12 | ssel2 | |- ( ( A C_ RR /\ y e. A ) -> y e. RR ) |
|
| 13 | ltresr2 | |- ( ( y e. RR /\ x e. RR ) -> ( y |
|
| 14 | breq1 | |- ( ( 1st ` y ) = w -> ( ( 1st ` y ) |
|
| 15 | 13 14 | sylan9bb | |- ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y |
| 16 | 15 | biimpd | |- ( ( ( y e. RR /\ x e. RR ) /\ ( 1st ` y ) = w ) -> ( y |
| 17 | 16 | exp31 | |- ( y e. RR -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y |
| 18 | 12 17 | syl | |- ( ( A C_ RR /\ y e. A ) -> ( x e. RR -> ( ( 1st ` y ) = w -> ( y |
| 19 | 18 | imp4b | |- ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( ( 1st ` y ) = w /\ y |
| 20 | 19 | ancomsd | |- ( ( ( A C_ RR /\ y e. A ) /\ x e. RR ) -> ( ( y |
| 21 | 20 | an32s | |- ( ( ( A C_ RR /\ x e. RR ) /\ y e. A ) -> ( ( y |
| 22 | 21 | rexlimdva | |- ( ( A C_ RR /\ x e. RR ) -> ( E. y e. A ( y |
| 23 | 11 22 | syl5 | |- ( ( A C_ RR /\ x e. RR ) -> ( ( A. y e. A y |
| 24 | 23 | expd | |- ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y |
| 25 | 10 24 | syl7bi | |- ( ( A C_ RR /\ x e. RR ) -> ( A. y e. A y |
| 26 | 25 | impr | |- ( ( A C_ RR /\ ( x e. RR /\ A. y e. A y |
| 27 | 26 | adantlr | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y |
| 28 | 27 | ralrimiv | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ ( x e. RR /\ A. y e. A y |
| 29 | 28 | expr | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y |
| 30 | brralrspcev | |- ( ( ( 1st ` x ) e. R. /\ A. w e. ( 1st " A ) w |
|
| 31 | 3 29 30 | syl6an | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ x e. RR ) -> ( A. y e. A y |
| 32 | 31 | rexlimdva | |- ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y |
| 33 | n0 | |- ( A =/= (/) <-> E. y y e. A ) |
|
| 34 | fnfvima | |- ( ( 1st Fn _V /\ A C_ _V /\ y e. A ) -> ( 1st ` y ) e. ( 1st " A ) ) |
|
| 35 | 7 8 34 | mp3an12 | |- ( y e. A -> ( 1st ` y ) e. ( 1st " A ) ) |
| 36 | 35 | ne0d | |- ( y e. A -> ( 1st " A ) =/= (/) ) |
| 37 | 36 | exlimiv | |- ( E. y y e. A -> ( 1st " A ) =/= (/) ) |
| 38 | 33 37 | sylbi | |- ( A =/= (/) -> ( 1st " A ) =/= (/) ) |
| 39 | supsr | |- ( ( ( 1st " A ) =/= (/) /\ E. v e. R. A. w e. ( 1st " A ) w |
|
| 40 | 39 | ex | |- ( ( 1st " A ) =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w |
| 41 | 38 40 | syl | |- ( A =/= (/) -> ( E. v e. R. A. w e. ( 1st " A ) w |
| 42 | 41 | adantl | |- ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. A. w e. ( 1st " A ) w |
| 43 | breq2 | |- ( w = ( 1st ` y ) -> ( v |
|
| 44 | 43 | notbid | |- ( w = ( 1st ` y ) -> ( -. v |
| 45 | 44 | rspccv | |- ( A. w e. ( 1st " A ) -. v |
| 46 | 35 45 | syl5com | |- ( y e. A -> ( A. w e. ( 1st " A ) -. v |
| 47 | 46 | adantl | |- ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v |
| 48 | elreal2 | |- ( y e. RR <-> ( ( 1st ` y ) e. R. /\ y = <. ( 1st ` y ) , 0R >. ) ) |
|
| 49 | 48 | simprbi | |- ( y e. RR -> y = <. ( 1st ` y ) , 0R >. ) |
| 50 | 49 | breq2d | |- ( y e. RR -> ( <. v , 0R >. |
| 51 | ltresr | |- ( <. v , 0R >. |
|
| 52 | 50 51 | bitrdi | |- ( y e. RR -> ( <. v , 0R >. |
| 53 | 12 52 | syl | |- ( ( A C_ RR /\ y e. A ) -> ( <. v , 0R >. |
| 54 | 53 | notbid | |- ( ( A C_ RR /\ y e. A ) -> ( -. <. v , 0R >. |
| 55 | 47 54 | sylibrd | |- ( ( A C_ RR /\ y e. A ) -> ( A. w e. ( 1st " A ) -. v |
| 56 | 55 | ralrimdva | |- ( A C_ RR -> ( A. w e. ( 1st " A ) -. v |
| 57 | 56 | ad2antrr | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. ( 1st " A ) -. v |
| 58 | 49 | breq1d | |- ( y e. RR -> ( y |
| 59 | ltresr | |- ( <. ( 1st ` y ) , 0R >. |
|
| 60 | 58 59 | bitrdi | |- ( y e. RR -> ( y |
| 61 | 48 | simplbi | |- ( y e. RR -> ( 1st ` y ) e. R. ) |
| 62 | breq1 | |- ( w = ( 1st ` y ) -> ( w |
|
| 63 | breq1 | |- ( w = ( 1st ` y ) -> ( w |
|
| 64 | 63 | rexbidv | |- ( w = ( 1st ` y ) -> ( E. u e. ( 1st " A ) w |
| 65 | 62 64 | imbi12d | |- ( w = ( 1st ` y ) -> ( ( w |
| 66 | 65 | rspccv | |- ( A. w e. R. ( w |
| 67 | 61 66 | syl5 | |- ( A. w e. R. ( w |
| 68 | 67 | com3l | |- ( y e. RR -> ( ( 1st ` y ) |
| 69 | 60 68 | sylbid | |- ( y e. RR -> ( y |
| 70 | 69 | adantr | |- ( ( y e. RR /\ A C_ RR ) -> ( y |
| 71 | fvelimab | |- ( ( 1st Fn _V /\ A C_ _V ) -> ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u ) ) |
|
| 72 | 7 8 71 | mp2an | |- ( u e. ( 1st " A ) <-> E. z e. A ( 1st ` z ) = u ) |
| 73 | ssel2 | |- ( ( A C_ RR /\ z e. A ) -> z e. RR ) |
|
| 74 | ltresr2 | |- ( ( y e. RR /\ z e. RR ) -> ( y |
|
| 75 | 73 74 | sylan2 | |- ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( y |
| 76 | breq2 | |- ( ( 1st ` z ) = u -> ( ( 1st ` y ) |
|
| 77 | 75 76 | sylan9bb | |- ( ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) /\ ( 1st ` z ) = u ) -> ( y |
| 78 | 77 | exbiri | |- ( ( y e. RR /\ ( A C_ RR /\ z e. A ) ) -> ( ( 1st ` z ) = u -> ( ( 1st ` y ) |
| 79 | 78 | expr | |- ( ( y e. RR /\ A C_ RR ) -> ( z e. A -> ( ( 1st ` z ) = u -> ( ( 1st ` y ) |
| 80 | 79 | com4r | |- ( ( 1st ` y ) |
| 81 | 80 | imp | |- ( ( ( 1st ` y ) |
| 82 | 81 | reximdvai | |- ( ( ( 1st ` y ) |
| 83 | 72 82 | biimtrid | |- ( ( ( 1st ` y ) |
| 84 | 83 | expcom | |- ( ( y e. RR /\ A C_ RR ) -> ( ( 1st ` y ) |
| 85 | 84 | com23 | |- ( ( y e. RR /\ A C_ RR ) -> ( u e. ( 1st " A ) -> ( ( 1st ` y ) |
| 86 | 85 | rexlimdv | |- ( ( y e. RR /\ A C_ RR ) -> ( E. u e. ( 1st " A ) ( 1st ` y ) |
| 87 | 70 86 | syl6d | |- ( ( y e. RR /\ A C_ RR ) -> ( y |
| 88 | 87 | com23 | |- ( ( y e. RR /\ A C_ RR ) -> ( A. w e. R. ( w |
| 89 | 88 | ex | |- ( y e. RR -> ( A C_ RR -> ( A. w e. R. ( w |
| 90 | 89 | com3l | |- ( A C_ RR -> ( A. w e. R. ( w |
| 91 | 90 | ad2antrr | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w |
| 92 | 91 | ralrimdv | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( A. w e. R. ( w |
| 93 | opelreal | |- ( <. v , 0R >. e. RR <-> v e. R. ) |
|
| 94 | 93 | biimpri | |- ( v e. R. -> <. v , 0R >. e. RR ) |
| 95 | 94 | adantl | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> <. v , 0R >. e. RR ) |
| 96 | breq1 | |- ( x = <. v , 0R >. -> ( x |
|
| 97 | 96 | notbid | |- ( x = <. v , 0R >. -> ( -. x |
| 98 | 97 | ralbidv | |- ( x = <. v , 0R >. -> ( A. y e. A -. x |
| 99 | breq2 | |- ( x = <. v , 0R >. -> ( y |
|
| 100 | 99 | imbi1d | |- ( x = <. v , 0R >. -> ( ( y |
| 101 | 100 | ralbidv | |- ( x = <. v , 0R >. -> ( A. y e. RR ( y |
| 102 | 98 101 | anbi12d | |- ( x = <. v , 0R >. -> ( ( A. y e. A -. x |
| 103 | 102 | rspcev | |- ( ( <. v , 0R >. e. RR /\ ( A. y e. A -. <. v , 0R >. |
| 104 | 103 | ex | |- ( <. v , 0R >. e. RR -> ( ( A. y e. A -. <. v , 0R >. |
| 105 | 95 104 | syl | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. y e. A -. <. v , 0R >. |
| 106 | 57 92 105 | syl2and | |- ( ( ( A C_ RR /\ A =/= (/) ) /\ v e. R. ) -> ( ( A. w e. ( 1st " A ) -. v |
| 107 | 106 | rexlimdva | |- ( ( A C_ RR /\ A =/= (/) ) -> ( E. v e. R. ( A. w e. ( 1st " A ) -. v |
| 108 | 32 42 107 | 3syld | |- ( ( A C_ RR /\ A =/= (/) ) -> ( E. x e. RR A. y e. A y |
| 109 | 108 | 3impia | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y |