This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe containing _om contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wuncn.1 | |- ( ph -> U e. WUni ) |
|
| wuncn.2 | |- ( ph -> _om e. U ) |
||
| Assertion | wuncn | |- ( ph -> CC e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wuncn.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wuncn.2 | |- ( ph -> _om e. U ) |
|
| 3 | df-c | |- CC = ( R. X. R. ) |
|
| 4 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 5 | df-ni | |- N. = ( _om \ { (/) } ) |
|
| 6 | 1 2 | wundif | |- ( ph -> ( _om \ { (/) } ) e. U ) |
| 7 | 5 6 | eqeltrid | |- ( ph -> N. e. U ) |
| 8 | 1 7 7 | wunxp | |- ( ph -> ( N. X. N. ) e. U ) |
| 9 | elpqn | |- ( x e. Q. -> x e. ( N. X. N. ) ) |
|
| 10 | 9 | ssriv | |- Q. C_ ( N. X. N. ) |
| 11 | 10 | a1i | |- ( ph -> Q. C_ ( N. X. N. ) ) |
| 12 | 1 8 11 | wunss | |- ( ph -> Q. e. U ) |
| 13 | 1 12 | wunpw | |- ( ph -> ~P Q. e. U ) |
| 14 | prpssnq | |- ( x e. P. -> x C. Q. ) |
|
| 15 | 14 | pssssd | |- ( x e. P. -> x C_ Q. ) |
| 16 | velpw | |- ( x e. ~P Q. <-> x C_ Q. ) |
|
| 17 | 15 16 | sylibr | |- ( x e. P. -> x e. ~P Q. ) |
| 18 | 17 | ssriv | |- P. C_ ~P Q. |
| 19 | 18 | a1i | |- ( ph -> P. C_ ~P Q. ) |
| 20 | 1 13 19 | wunss | |- ( ph -> P. e. U ) |
| 21 | 1 20 20 | wunxp | |- ( ph -> ( P. X. P. ) e. U ) |
| 22 | 1 21 | wunpw | |- ( ph -> ~P ( P. X. P. ) e. U ) |
| 23 | enrer | |- ~R Er ( P. X. P. ) |
|
| 24 | 23 | a1i | |- ( ph -> ~R Er ( P. X. P. ) ) |
| 25 | 24 | qsss | |- ( ph -> ( ( P. X. P. ) /. ~R ) C_ ~P ( P. X. P. ) ) |
| 26 | 1 22 25 | wunss | |- ( ph -> ( ( P. X. P. ) /. ~R ) e. U ) |
| 27 | 4 26 | eqeltrid | |- ( ph -> R. e. U ) |
| 28 | 1 27 27 | wunxp | |- ( ph -> ( R. X. R. ) e. U ) |
| 29 | 3 28 | eqeltrid | |- ( ph -> CC e. U ) |