This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by Theorem axpre-sup . Note: Normally new proofs would use axsup . (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-pre-sup | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cr | |- RR |
|
| 2 | 0 1 | wss | |- A C_ RR |
| 3 | c0 | |- (/) |
|
| 4 | 0 3 | wne | |- A =/= (/) |
| 5 | vx | |- x |
|
| 6 | vy | |- y |
|
| 7 | 6 | cv | |- y |
| 8 | cltrr | |- |
|
| 9 | 5 | cv | |- x |
| 10 | 7 9 8 | wbr | |- y |
| 11 | 10 6 0 | wral | |- A. y e. A y |
| 12 | 11 5 1 | wrex | |- E. x e. RR A. y e. A y |
| 13 | 2 4 12 | w3a | |- ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y |
| 14 | 9 7 8 | wbr | |- x |
| 15 | 14 | wn | |- -. x |
| 16 | 15 6 0 | wral | |- A. y e. A -. x |
| 17 | vz | |- z |
|
| 18 | 17 | cv | |- z |
| 19 | 7 18 8 | wbr | |- y |
| 20 | 19 17 0 | wrex | |- E. z e. A y |
| 21 | 10 20 | wi | |- ( y |
| 22 | 21 6 1 | wral | |- A. y e. RR ( y |
| 23 | 16 22 | wa | |- ( A. y e. A -. x |
| 24 | 23 5 1 | wrex | |- E. x e. RR ( A. y e. A -. x |
| 25 | 13 24 | wi | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y |