This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttrn . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpre-lttrn | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
|
| 2 | elreal | |- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
|
| 3 | elreal | |- ( C e. RR <-> E. z e. R. <. z , 0R >. = C ) |
|
| 4 | breq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. |
|
| 5 | 4 | anbi1d | |- ( <. x , 0R >. = A -> ( ( <. x , 0R >. |
| 6 | breq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. |
|
| 7 | 5 6 | imbi12d | |- ( <. x , 0R >. = A -> ( ( ( <. x , 0R >. |
| 8 | breq2 | |- ( <. y , 0R >. = B -> ( A |
|
| 9 | breq1 | |- ( <. y , 0R >. = B -> ( <. y , 0R >. |
|
| 10 | 8 9 | anbi12d | |- ( <. y , 0R >. = B -> ( ( A |
| 11 | 10 | imbi1d | |- ( <. y , 0R >. = B -> ( ( ( A |
| 12 | breq2 | |- ( <. z , 0R >. = C -> ( B |
|
| 13 | 12 | anbi2d | |- ( <. z , 0R >. = C -> ( ( A |
| 14 | breq2 | |- ( <. z , 0R >. = C -> ( A |
|
| 15 | 13 14 | imbi12d | |- ( <. z , 0R >. = C -> ( ( ( A |
| 16 | ltresr | |- ( <. x , 0R >. |
|
| 17 | ltresr | |- ( <. y , 0R >. |
|
| 18 | ltsosr | |- |
|
| 19 | ltrelsr | |- |
|
| 20 | 18 19 | sotri | |- ( ( x |
| 21 | 16 17 20 | syl2anb | |- ( ( <. x , 0R >. |
| 22 | ltresr | |- ( <. x , 0R >. |
|
| 23 | 21 22 | sylibr | |- ( ( <. x , 0R >. |
| 24 | 23 | a1i | |- ( ( x e. R. /\ y e. R. /\ z e. R. ) -> ( ( <. x , 0R >. |
| 25 | 1 2 3 7 11 15 24 | 3gencl | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A |