This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axltadd . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd . (Contributed by NM, 11-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpre-ltadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
|
| 2 | elreal | |- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
|
| 3 | elreal | |- ( C e. RR <-> E. z e. R. <. z , 0R >. = C ) |
|
| 4 | breq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. |
|
| 5 | oveq2 | |- ( <. x , 0R >. = A -> ( <. z , 0R >. + <. x , 0R >. ) = ( <. z , 0R >. + A ) ) |
|
| 6 | 5 | breq1d | |- ( <. x , 0R >. = A -> ( ( <. z , 0R >. + <. x , 0R >. ) |
| 7 | 4 6 | bibi12d | |- ( <. x , 0R >. = A -> ( ( <. x , 0R >. |
| 8 | breq2 | |- ( <. y , 0R >. = B -> ( A |
|
| 9 | oveq2 | |- ( <. y , 0R >. = B -> ( <. z , 0R >. + <. y , 0R >. ) = ( <. z , 0R >. + B ) ) |
|
| 10 | 9 | breq2d | |- ( <. y , 0R >. = B -> ( ( <. z , 0R >. + A ) |
| 11 | 8 10 | bibi12d | |- ( <. y , 0R >. = B -> ( ( A |
| 12 | oveq1 | |- ( <. z , 0R >. = C -> ( <. z , 0R >. + A ) = ( C + A ) ) |
|
| 13 | oveq1 | |- ( <. z , 0R >. = C -> ( <. z , 0R >. + B ) = ( C + B ) ) |
|
| 14 | 12 13 | breq12d | |- ( <. z , 0R >. = C -> ( ( <. z , 0R >. + A ) |
| 15 | 14 | bibi2d | |- ( <. z , 0R >. = C -> ( ( A |
| 16 | ltasr | |- ( z e. R. -> ( x |
|
| 17 | 16 | adantr | |- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( x |
| 18 | ltresr | |- ( <. x , 0R >. |
|
| 19 | 18 | a1i | |- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( <. x , 0R >. |
| 20 | addresr | |- ( ( z e. R. /\ x e. R. ) -> ( <. z , 0R >. + <. x , 0R >. ) = <. ( z +R x ) , 0R >. ) |
|
| 21 | addresr | |- ( ( z e. R. /\ y e. R. ) -> ( <. z , 0R >. + <. y , 0R >. ) = <. ( z +R y ) , 0R >. ) |
|
| 22 | 20 21 | breqan12d | |- ( ( ( z e. R. /\ x e. R. ) /\ ( z e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) |
| 23 | 22 | anandis | |- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) |
| 24 | ltresr | |- ( <. ( z +R x ) , 0R >. |
|
| 25 | 23 24 | bitrdi | |- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( ( <. z , 0R >. + <. x , 0R >. ) |
| 26 | 17 19 25 | 3bitr4d | |- ( ( z e. R. /\ ( x e. R. /\ y e. R. ) ) -> ( <. x , 0R >. |
| 27 | 26 | ancoms | |- ( ( ( x e. R. /\ y e. R. ) /\ z e. R. ) -> ( <. x , 0R >. |
| 28 | 27 | 3impa | |- ( ( x e. R. /\ y e. R. /\ z e. R. ) -> ( <. x , 0R >. |
| 29 | 1 2 3 7 11 15 28 | 3gencl | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A |
| 30 | 29 | biimpd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A |