This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 . (Contributed by NM, 13-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpre-mulgt0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
|
| 2 | elreal | |- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
|
| 3 | breq2 | |- ( <. x , 0R >. = A -> ( 0 |
|
| 4 | 3 | anbi1d | |- ( <. x , 0R >. = A -> ( ( 0 |
| 5 | oveq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. x. <. y , 0R >. ) = ( A x. <. y , 0R >. ) ) |
|
| 6 | 5 | breq2d | |- ( <. x , 0R >. = A -> ( 0 |
| 7 | 4 6 | imbi12d | |- ( <. x , 0R >. = A -> ( ( ( 0 |
| 8 | breq2 | |- ( <. y , 0R >. = B -> ( 0 |
|
| 9 | 8 | anbi2d | |- ( <. y , 0R >. = B -> ( ( 0 |
| 10 | oveq2 | |- ( <. y , 0R >. = B -> ( A x. <. y , 0R >. ) = ( A x. B ) ) |
|
| 11 | 10 | breq2d | |- ( <. y , 0R >. = B -> ( 0 |
| 12 | 9 11 | imbi12d | |- ( <. y , 0R >. = B -> ( ( ( 0 |
| 13 | df-0 | |- 0 = <. 0R , 0R >. |
|
| 14 | 13 | breq1i | |- ( 0 |
| 15 | ltresr | |- ( <. 0R , 0R >. |
|
| 16 | 14 15 | bitri | |- ( 0 |
| 17 | 13 | breq1i | |- ( 0 |
| 18 | ltresr | |- ( <. 0R , 0R >. |
|
| 19 | 17 18 | bitri | |- ( 0 |
| 20 | mulgt0sr | |- ( ( 0R |
|
| 21 | 16 19 20 | syl2anb | |- ( ( 0 |
| 22 | 13 | a1i | |- ( ( x e. R. /\ y e. R. ) -> 0 = <. 0R , 0R >. ) |
| 23 | mulresr | |- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. x. <. y , 0R >. ) = <. ( x .R y ) , 0R >. ) |
|
| 24 | 22 23 | breq12d | |- ( ( x e. R. /\ y e. R. ) -> ( 0 |
| 25 | ltresr | |- ( <. 0R , 0R >. |
|
| 26 | 24 25 | bitrdi | |- ( ( x e. R. /\ y e. R. ) -> ( 0 |
| 27 | 21 26 | imbitrrid | |- ( ( x e. R. /\ y e. R. ) -> ( ( 0 |
| 28 | 1 2 7 12 27 | 2gencl | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 |