This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| ausgrusgri.1 | |- O = { f | f : dom f -1-1-> ran f } |
||
| Assertion | ausgrusgri | |- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| 2 | ausgrusgri.1 | |- O = { f | f : dom f -1-1-> ran f } |
|
| 3 | fvex | |- ( Vtx ` H ) e. _V |
|
| 4 | fvex | |- ( Edg ` H ) e. _V |
|
| 5 | 1 | isausgr | |- ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
| 6 | 3 4 5 | mp2an | |- ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
| 7 | edgval | |- ( Edg ` H ) = ran ( iEdg ` H ) |
|
| 8 | 7 | a1i | |- ( H e. W -> ( Edg ` H ) = ran ( iEdg ` H ) ) |
| 9 | 8 | sseq1d | |- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } <-> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
| 10 | 2 | eleq2i | |- ( ( iEdg ` H ) e. O <-> ( iEdg ` H ) e. { f | f : dom f -1-1-> ran f } ) |
| 11 | fvex | |- ( iEdg ` H ) e. _V |
|
| 12 | id | |- ( f = ( iEdg ` H ) -> f = ( iEdg ` H ) ) |
|
| 13 | dmeq | |- ( f = ( iEdg ` H ) -> dom f = dom ( iEdg ` H ) ) |
|
| 14 | rneq | |- ( f = ( iEdg ` H ) -> ran f = ran ( iEdg ` H ) ) |
|
| 15 | 12 13 14 | f1eq123d | |- ( f = ( iEdg ` H ) -> ( f : dom f -1-1-> ran f <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) ) |
| 16 | 11 15 | elab | |- ( ( iEdg ` H ) e. { f | f : dom f -1-1-> ran f } <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
| 17 | 10 16 | sylbb | |- ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
| 18 | 17 | 3ad2ant3 | |- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
| 19 | simp2 | |- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
|
| 20 | f1ssr | |- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
| 22 | 21 | 3exp | |- ( H e. W -> ( ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
| 23 | 9 22 | sylbid | |- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
| 24 | 6 23 | biimtrid | |- ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
| 25 | 24 | 3imp | |- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
| 26 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 27 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 28 | 26 27 | isusgrs | |- ( H e. W -> ( H e. USGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> ( H e. USGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
| 30 | 25 29 | mpbird | |- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) |