This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| ausgrusgri.1 | ⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } | ||
| Assertion | ausgrusgri | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → 𝐻 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| 2 | ausgrusgri.1 | ⊢ 𝑂 = { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } | |
| 3 | fvex | ⊢ ( Vtx ‘ 𝐻 ) ∈ V | |
| 4 | fvex | ⊢ ( Edg ‘ 𝐻 ) ∈ V | |
| 5 | 1 | isausgr | ⊢ ( ( ( Vtx ‘ 𝐻 ) ∈ V ∧ ( Edg ‘ 𝐻 ) ∈ V ) → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 6 | 3 4 5 | mp2an | ⊢ ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ↔ ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 7 | edgval | ⊢ ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) | |
| 8 | 7 | a1i | ⊢ ( 𝐻 ∈ 𝑊 → ( Edg ‘ 𝐻 ) = ran ( iEdg ‘ 𝐻 ) ) |
| 9 | 8 | sseq1d | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 10 | 2 | eleq2i | ⊢ ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 ↔ ( iEdg ‘ 𝐻 ) ∈ { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } ) |
| 11 | fvex | ⊢ ( iEdg ‘ 𝐻 ) ∈ V | |
| 12 | id | ⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → 𝑓 = ( iEdg ‘ 𝐻 ) ) | |
| 13 | dmeq | ⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → dom 𝑓 = dom ( iEdg ‘ 𝐻 ) ) | |
| 14 | rneq | ⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → ran 𝑓 = ran ( iEdg ‘ 𝐻 ) ) | |
| 15 | 12 13 14 | f1eq123d | ⊢ ( 𝑓 = ( iEdg ‘ 𝐻 ) → ( 𝑓 : dom 𝑓 –1-1→ ran 𝑓 ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) ) |
| 16 | 11 15 | elab | ⊢ ( ( iEdg ‘ 𝐻 ) ∈ { 𝑓 ∣ 𝑓 : dom 𝑓 –1-1→ ran 𝑓 } ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
| 17 | 10 16 | sylbb | ⊢ ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ) |
| 19 | simp2 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 20 | f1ssr | ⊢ ( ( ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ ran ( iEdg ‘ 𝐻 ) ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 22 | 21 | 3exp | ⊢ ( 𝐻 ∈ 𝑊 → ( ran ( iEdg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 23 | 9 22 | sylbid | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Edg ‘ 𝐻 ) ⊆ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 24 | 6 23 | biimtrid | ⊢ ( 𝐻 ∈ 𝑊 → ( ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) → ( ( iEdg ‘ 𝐻 ) ∈ 𝑂 → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 25 | 24 | 3imp | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 26 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 27 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 28 | 26 27 | isusgrs | ⊢ ( 𝐻 ∈ 𝑊 → ( 𝐻 ∈ USGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → ( 𝐻 ∈ USGraph ↔ ( iEdg ‘ 𝐻 ) : dom ( iEdg ‘ 𝐻 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐻 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 30 | 25 29 | mpbird | ⊢ ( ( 𝐻 ∈ 𝑊 ∧ ( Vtx ‘ 𝐻 ) 𝐺 ( Edg ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐻 ) ∈ 𝑂 ) → 𝐻 ∈ USGraph ) |