This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph, expressed with the set of vertices and the set of edges. (Contributed by AV, 2-Jan-2020) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| ausgrusgri.1 | |- O = { f | f : dom f -1-1-> ran f } |
||
| Assertion | usgrausgrb | |- ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> H e. USGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| 2 | ausgrusgri.1 | |- O = { f | f : dom f -1-1-> ran f } |
|
| 3 | 1 2 | ausgrusgri | |- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) |
| 4 | 3 | 3exp | |- ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( ( iEdg ` H ) e. O -> H e. USGraph ) ) ) |
| 5 | 4 | com23 | |- ( H e. W -> ( ( iEdg ` H ) e. O -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) ) |
| 6 | 5 | imp | |- ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) -> H e. USGraph ) ) |
| 7 | 1 | usgrausgri | |- ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |
| 8 | 6 7 | impbid1 | |- ( ( H e. W /\ ( iEdg ` H ) e. O ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> H e. USGraph ) ) |