This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of an ordered pair to be an alternatively defined simple graph, defined as a pair (V,E) of a set V (vertex set) and a set of unordered pairs of elements of V (edge set). (Contributed by Alexander van der Vekens, 28-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| Assertion | isausgr | |- ( ( V e. W /\ E e. X ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| 2 | simpr | |- ( ( v = V /\ e = E ) -> e = E ) |
|
| 3 | pweq | |- ( v = V -> ~P v = ~P V ) |
|
| 4 | 3 | adantr | |- ( ( v = V /\ e = E ) -> ~P v = ~P V ) |
| 5 | 4 | rabeqdv | |- ( ( v = V /\ e = E ) -> { x e. ~P v | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
| 6 | 2 5 | sseq12d | |- ( ( v = V /\ e = E ) -> ( e C_ { x e. ~P v | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 7 | 6 1 | brabga | |- ( ( V e. W /\ E e. X ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |