This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017) (Revised by AV, 14-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| Assertion | ausgrusgrb | |- ( ( V e. X /\ E e. Y ) -> ( V G E <-> <. V , ( _I |` E ) >. e. USGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| 2 | 1 | isausgr | |- ( ( V e. X /\ E e. Y ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 3 | f1oi | |- ( _I |` E ) : E -1-1-onto-> E |
|
| 4 | dff1o5 | |- ( ( _I |` E ) : E -1-1-onto-> E <-> ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) ) |
|
| 5 | f1ss | |- ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
|
| 6 | dmresi | |- dom ( _I |` E ) = E |
|
| 7 | 6 | eqcomi | |- E = dom ( _I |` E ) |
| 8 | f1eq2 | |- ( E = dom ( _I |` E ) -> ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
| 10 | 5 9 | sylib | |- ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
| 11 | 10 | ex | |- ( ( _I |` E ) : E -1-1-> E -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 12 | 11 | a1d | |- ( ( _I |` E ) : E -1-1-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
| 13 | 12 | adantr | |- ( ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
| 14 | 4 13 | sylbi | |- ( ( _I |` E ) : E -1-1-onto-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
| 15 | 3 14 | ax-mp | |- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 16 | df-f | |- ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } <-> ( ( _I |` E ) Fn dom ( _I |` E ) /\ ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
|
| 17 | rnresi | |- ran ( _I |` E ) = E |
|
| 18 | 17 | sseq1i | |- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) |
| 19 | 18 | biimpi | |- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) |
| 20 | 19 | a1d | |- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 21 | 16 20 | simplbiim | |- ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 22 | f1f | |- ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } ) |
|
| 23 | 21 22 | syl11 | |- ( ( V e. X /\ E e. Y ) -> ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 24 | 15 23 | impbid | |- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 25 | resiexg | |- ( E e. Y -> ( _I |` E ) e. _V ) |
|
| 26 | opiedgfv | |- ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
|
| 27 | 25 26 | sylan2 | |- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
| 28 | 27 | dmeqd | |- ( ( V e. X /\ E e. Y ) -> dom ( iEdg ` <. V , ( _I |` E ) >. ) = dom ( _I |` E ) ) |
| 29 | opvtxfv | |- ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
|
| 30 | 25 29 | sylan2 | |- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
| 31 | 30 | pweqd | |- ( ( V e. X /\ E e. Y ) -> ~P ( Vtx ` <. V , ( _I |` E ) >. ) = ~P V ) |
| 32 | 31 | rabeqdv | |- ( ( V e. X /\ E e. Y ) -> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
| 33 | 27 28 32 | f1eq123d | |- ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 34 | 24 33 | bitr4d | |- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) |
| 35 | opex | |- <. V , ( _I |` E ) >. e. _V |
|
| 36 | eqid | |- ( Vtx ` <. V , ( _I |` E ) >. ) = ( Vtx ` <. V , ( _I |` E ) >. ) |
|
| 37 | eqid | |- ( iEdg ` <. V , ( _I |` E ) >. ) = ( iEdg ` <. V , ( _I |` E ) >. ) |
|
| 38 | 36 37 | isusgrs | |- ( <. V , ( _I |` E ) >. e. _V -> ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) |
| 39 | 35 38 | ax-mp | |- ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) |
| 40 | 39 | bicomi | |- ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) |
| 41 | 40 | a1i | |- ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) ) |
| 42 | 2 34 41 | 3bitrd | |- ( ( V e. X /\ E e. Y ) -> ( V G E <-> <. V , ( _I |` E ) >. e. USGraph ) ) |