This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence of the definitions of a simple graph. (Contributed by Alexander van der Vekens, 28-Aug-2017) (Revised by AV, 14-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| Assertion | ausgrusgrb | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑉 𝐺 𝐸 ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | ⊢ 𝐺 = { 〈 𝑣 , 𝑒 〉 ∣ 𝑒 ⊆ { 𝑥 ∈ 𝒫 𝑣 ∣ ( ♯ ‘ 𝑥 ) = 2 } } | |
| 2 | 1 | isausgr | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑉 𝐺 𝐸 ↔ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 3 | f1oi | ⊢ ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 | |
| 4 | dff1o5 | ⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 ↔ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ ran ( I ↾ 𝐸 ) = 𝐸 ) ) | |
| 5 | f1ss | ⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 6 | dmresi | ⊢ dom ( I ↾ 𝐸 ) = 𝐸 | |
| 7 | 6 | eqcomi | ⊢ 𝐸 = dom ( I ↾ 𝐸 ) |
| 8 | f1eq2 | ⊢ ( 𝐸 = dom ( I ↾ 𝐸 ) → ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 10 | 5 9 | sylib | ⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 11 | 10 | ex | ⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 12 | 11 | a1d | ⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( I ↾ 𝐸 ) : 𝐸 –1-1→ 𝐸 ∧ ran ( I ↾ 𝐸 ) = 𝐸 ) → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 14 | 4 13 | sylbi | ⊢ ( ( I ↾ 𝐸 ) : 𝐸 –1-1-onto→ 𝐸 → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) ) |
| 15 | 3 14 | ax-mp | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 16 | df-f | ⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( I ↾ 𝐸 ) Fn dom ( I ↾ 𝐸 ) ∧ ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) | |
| 17 | rnresi | ⊢ ran ( I ↾ 𝐸 ) = 𝐸 | |
| 18 | 17 | sseq1i | ⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 19 | 18 | biimpi | ⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 20 | 19 | a1d | ⊢ ( ran ( I ↾ 𝐸 ) ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 21 | 16 20 | simplbiim | ⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 22 | f1f | ⊢ ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 23 | 21 22 | syl11 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 24 | 15 23 | impbid | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 25 | resiexg | ⊢ ( 𝐸 ∈ 𝑌 → ( I ↾ 𝐸 ) ∈ V ) | |
| 26 | opiedgfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸 ) ∈ V ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) | |
| 27 | 25 26 | sylan2 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( I ↾ 𝐸 ) ) |
| 28 | 27 | dmeqd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = dom ( I ↾ 𝐸 ) ) |
| 29 | opvtxfv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ ( I ↾ 𝐸 ) ∈ V ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) | |
| 30 | 25 29 | sylan2 | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝑉 ) |
| 31 | 30 | pweqd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = 𝒫 𝑉 ) |
| 32 | 31 | rabeqdv | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 33 | 27 28 32 | f1eq123d | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( I ↾ 𝐸 ) : dom ( I ↾ 𝐸 ) –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 34 | 24 33 | bitr4d | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝐸 ⊆ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 35 | opex | ⊢ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V | |
| 36 | eqid | ⊢ ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) | |
| 37 | eqid | ⊢ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) = ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) | |
| 38 | 36 37 | isusgrs | ⊢ ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ V → ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
| 39 | 35 38 | ax-mp | ⊢ ( 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ↔ ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 40 | 39 | bicomi | ⊢ ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) |
| 41 | 40 | a1i | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) : dom ( iEdg ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) –1-1→ { 𝑥 ∈ 𝒫 ( Vtx ‘ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) ) |
| 42 | 2 34 41 | 3bitrd | ⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌 ) → ( 𝑉 𝐺 𝐸 ↔ 〈 𝑉 , ( I ↾ 𝐸 ) 〉 ∈ USGraph ) ) |