This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| Assertion | usgrausgri | |- ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ausgr.1 | |- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
|
| 2 | usgredgss | |- ( H e. USGraph -> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
|
| 3 | fvex | |- ( Vtx ` H ) e. _V |
|
| 4 | fvex | |- ( Edg ` H ) e. _V |
|
| 5 | 1 | isausgr | |- ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
| 6 | 3 4 5 | mp2an | |- ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
| 7 | 2 6 | sylibr | |- ( H e. USGraph -> ( Vtx ` H ) G ( Edg ` H ) ) |