This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of distinct atoms is zero. ( atnemeq0 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnem0.m | |- ./\ = ( meet ` K ) |
|
| atnem0.z | |- .0. = ( 0. ` K ) |
||
| atnem0.a | |- A = ( Atoms ` K ) |
||
| Assertion | atnem0 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ./\ Q ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnem0.m | |- ./\ = ( meet ` K ) |
|
| 2 | atnem0.z | |- .0. = ( 0. ` K ) |
|
| 3 | atnem0.a | |- A = ( Atoms ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | 4 3 | atncmp | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P ( le ` K ) Q <-> P =/= Q ) ) |
| 6 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 7 | 6 3 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 8 | 6 4 1 2 3 | atnle | |- ( ( K e. AtLat /\ P e. A /\ Q e. ( Base ` K ) ) -> ( -. P ( le ` K ) Q <-> ( P ./\ Q ) = .0. ) ) |
| 9 | 7 8 | syl3an3 | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( -. P ( le ` K ) Q <-> ( P ./\ Q ) = .0. ) ) |
| 10 | 5 9 | bitr3d | |- ( ( K e. AtLat /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> ( P ./\ Q ) = .0. ) ) |