This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every nonzero element of an atomic lattice is greater than or equal to an atom. ( hatomic analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlex.b | |- B = ( Base ` K ) |
|
| atlex.l | |- .<_ = ( le ` K ) |
||
| atlex.z | |- .0. = ( 0. ` K ) |
||
| atlex.a | |- A = ( Atoms ` K ) |
||
| Assertion | atlex | |- ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. y e. A y .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlex.b | |- B = ( Base ` K ) |
|
| 2 | atlex.l | |- .<_ = ( le ` K ) |
|
| 3 | atlex.z | |- .0. = ( 0. ` K ) |
|
| 4 | atlex.a | |- A = ( Atoms ` K ) |
|
| 5 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 6 | 1 5 2 3 4 | isatl | |- ( K e. AtLat <-> ( K e. Lat /\ B e. dom ( glb ` K ) /\ A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) ) |
| 7 | 6 | simp3bi | |- ( K e. AtLat -> A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) ) |
| 8 | neeq1 | |- ( x = X -> ( x =/= .0. <-> X =/= .0. ) ) |
|
| 9 | breq2 | |- ( x = X -> ( y .<_ x <-> y .<_ X ) ) |
|
| 10 | 9 | rexbidv | |- ( x = X -> ( E. y e. A y .<_ x <-> E. y e. A y .<_ X ) ) |
| 11 | 8 10 | imbi12d | |- ( x = X -> ( ( x =/= .0. -> E. y e. A y .<_ x ) <-> ( X =/= .0. -> E. y e. A y .<_ X ) ) ) |
| 12 | 11 | rspccv | |- ( A. x e. B ( x =/= .0. -> E. y e. A y .<_ x ) -> ( X e. B -> ( X =/= .0. -> E. y e. A y .<_ X ) ) ) |
| 13 | 7 12 | syl | |- ( K e. AtLat -> ( X e. B -> ( X =/= .0. -> E. y e. A y .<_ X ) ) ) |
| 14 | 13 | 3imp | |- ( ( K e. AtLat /\ X e. B /\ X =/= .0. ) -> E. y e. A y .<_ X ) |