This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-asp | |- AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | casp | |- AlgSpan |
|
| 1 | vw | |- w |
|
| 2 | casa | |- AssAlg |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | vt | |- t |
|
| 9 | csubrg | |- SubRing |
|
| 10 | 5 9 | cfv | |- ( SubRing ` w ) |
| 11 | clss | |- LSubSp |
|
| 12 | 5 11 | cfv | |- ( LSubSp ` w ) |
| 13 | 10 12 | cin | |- ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) |
| 14 | 3 | cv | |- s |
| 15 | 8 | cv | |- t |
| 16 | 14 15 | wss | |- s C_ t |
| 17 | 16 8 13 | crab | |- { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } |
| 18 | 17 | cint | |- |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } |
| 19 | 3 7 18 | cmpt | |- ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) |
| 20 | 1 2 19 | cmpt | |- ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |
| 21 | 0 20 | wceq | |- AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |