This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclply1subcl.1 | |- A = ( algSc ` V ) |
|
| asclply1subcl.2 | |- U = ( R |`s S ) |
||
| asclply1subcl.3 | |- V = ( Poly1 ` R ) |
||
| asclply1subcl.4 | |- W = ( Poly1 ` U ) |
||
| asclply1subcl.5 | |- P = ( Base ` W ) |
||
| asclply1subcl.6 | |- ( ph -> S e. ( SubRing ` R ) ) |
||
| asclply1subcl.7 | |- ( ph -> Z e. S ) |
||
| Assertion | asclply1subcl | |- ( ph -> ( A ` Z ) e. P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclply1subcl.1 | |- A = ( algSc ` V ) |
|
| 2 | asclply1subcl.2 | |- U = ( R |`s S ) |
|
| 3 | asclply1subcl.3 | |- V = ( Poly1 ` R ) |
|
| 4 | asclply1subcl.4 | |- W = ( Poly1 ` U ) |
|
| 5 | asclply1subcl.5 | |- P = ( Base ` W ) |
|
| 6 | asclply1subcl.6 | |- ( ph -> S e. ( SubRing ` R ) ) |
|
| 7 | asclply1subcl.7 | |- ( ph -> Z e. S ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 8 | subrgss | |- ( S e. ( SubRing ` R ) -> S C_ ( Base ` R ) ) |
| 10 | 6 9 | syl | |- ( ph -> S C_ ( Base ` R ) ) |
| 11 | 10 7 | sseldd | |- ( ph -> Z e. ( Base ` R ) ) |
| 12 | subrgrcl | |- ( S e. ( SubRing ` R ) -> R e. Ring ) |
|
| 13 | 3 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` V ) ) |
| 14 | 6 12 13 | 3syl | |- ( ph -> R = ( Scalar ` V ) ) |
| 15 | 14 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` V ) ) ) |
| 16 | 11 15 | eleqtrd | |- ( ph -> Z e. ( Base ` ( Scalar ` V ) ) ) |
| 17 | eqid | |- ( Scalar ` V ) = ( Scalar ` V ) |
|
| 18 | eqid | |- ( Base ` ( Scalar ` V ) ) = ( Base ` ( Scalar ` V ) ) |
|
| 19 | eqid | |- ( .s ` V ) = ( .s ` V ) |
|
| 20 | eqid | |- ( 1r ` V ) = ( 1r ` V ) |
|
| 21 | 1 17 18 19 20 | asclval | |- ( Z e. ( Base ` ( Scalar ` V ) ) -> ( A ` Z ) = ( Z ( .s ` V ) ( 1r ` V ) ) ) |
| 22 | 16 21 | syl | |- ( ph -> ( A ` Z ) = ( Z ( .s ` V ) ( 1r ` V ) ) ) |
| 23 | 3 2 4 5 | subrgply1 | |- ( S e. ( SubRing ` R ) -> P e. ( SubRing ` V ) ) |
| 24 | eqid | |- ( V |`s P ) = ( V |`s P ) |
|
| 25 | 24 19 | ressvsca | |- ( P e. ( SubRing ` V ) -> ( .s ` V ) = ( .s ` ( V |`s P ) ) ) |
| 26 | 6 23 25 | 3syl | |- ( ph -> ( .s ` V ) = ( .s ` ( V |`s P ) ) ) |
| 27 | 26 | oveqd | |- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
| 28 | id | |- ( ph -> ph ) |
|
| 29 | 20 | subrg1cl | |- ( P e. ( SubRing ` V ) -> ( 1r ` V ) e. P ) |
| 30 | 6 23 29 | 3syl | |- ( ph -> ( 1r ` V ) e. P ) |
| 31 | 3 2 4 5 6 24 | ressply1vsca | |- ( ( ph /\ ( Z e. S /\ ( 1r ` V ) e. P ) ) -> ( Z ( .s ` W ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
| 32 | 28 7 30 31 | syl12anc | |- ( ph -> ( Z ( .s ` W ) ( 1r ` V ) ) = ( Z ( .s ` ( V |`s P ) ) ( 1r ` V ) ) ) |
| 33 | 27 32 | eqtr4d | |- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) = ( Z ( .s ` W ) ( 1r ` V ) ) ) |
| 34 | 2 | subrgring | |- ( S e. ( SubRing ` R ) -> U e. Ring ) |
| 35 | 4 | ply1lmod | |- ( U e. Ring -> W e. LMod ) |
| 36 | 6 34 35 | 3syl | |- ( ph -> W e. LMod ) |
| 37 | 2 8 | ressbas2 | |- ( S C_ ( Base ` R ) -> S = ( Base ` U ) ) |
| 38 | 6 9 37 | 3syl | |- ( ph -> S = ( Base ` U ) ) |
| 39 | 7 38 | eleqtrd | |- ( ph -> Z e. ( Base ` U ) ) |
| 40 | 2 | ovexi | |- U e. _V |
| 41 | 4 | ply1sca | |- ( U e. _V -> U = ( Scalar ` W ) ) |
| 42 | 40 41 | ax-mp | |- U = ( Scalar ` W ) |
| 43 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 44 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 45 | 5 42 43 44 | lmodvscl | |- ( ( W e. LMod /\ Z e. ( Base ` U ) /\ ( 1r ` V ) e. P ) -> ( Z ( .s ` W ) ( 1r ` V ) ) e. P ) |
| 46 | 36 39 30 45 | syl3anc | |- ( ph -> ( Z ( .s ` W ) ( 1r ` V ) ) e. P ) |
| 47 | 33 46 | eqeltrd | |- ( ph -> ( Z ( .s ` V ) ( 1r ` V ) ) e. P ) |
| 48 | 22 47 | eqeltrd | |- ( ph -> ( A ` Z ) e. P ) |